Skip to main content
Advanced Search

Filters: Categories: Data (X) > Types: OGC WMS Layer (X)

Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) ( Show direct descendants )

318 results (12ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
View Results as: JSON ATOM CSV
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning and inertial measurement technologies; LiDAR instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures and vegetation.
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:24,000-scale color infrared aerial photos collected in 2000. The photos are being interpreted using a 1-hectare 10% minimum vegetation cover to delineate land cover/land use, percent vegetation cover, tree height, and hydrology regime. The geographic extent of the UMRS is the Mississippi River from Cairo, IL to Minneapolis, MN and the Illinois River from its confluence with the Mississippi near Grafton, IL to Lake Michigan.
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
The Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) partnered with the U.S. Fish and Wildlife Service (USFWS) Region 3 to collect 2010 digital color infrared (CIR) aerial photography of Pools 1-13, Upper Mississippi River and Pools Alton–Marseilles, Illinois River at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS439 digital aerial camera. The photography shall be at a minimum accuracy of 5-10 meters and allow for the development of orthorectified photo mosaics by U.S. Geological Survey – Upper Midwest Environmental Sciences Center (USGS-UMESC) for all or portions of the coverage area. The flights occurred during times of peak vegetation biomass, typically from...
thumbnail
The Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) partnered with the U.S. Fish and Wildlife Service (USFWS) Region 3 to collect 2010 digital color infrared (CIR) aerial photography of Pools 1-13, Upper Mississippi River and Pools Alton–Marseilles, Illinois River at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS439 digital aerial camera. The photography shall be at a minimum accuracy of 5-10 meters and allow for the development of orthorectified photo mosaics by U.S. Geological Survey – Upper Midwest Environmental Sciences Center (USGS-UMESC) for all or portions of the coverage area. The flights occurred during times of peak vegetation biomass, typically from...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
The data set includes delineation of sampling strata for the six study reaches of the UMRR Program’s LTRM element. Separate strata coverages exist for each of the three monitoring components (fish, vegetation, and water quality) to meet the differing sampling needs among components. Generally, the sampling strata consist of main channel, side channel, backwater, and impounded areas. The fish component further delineates a “shoreline” portion of the strata to be used for sampling gears deployed only along the shoreline. The data are raster in origin, with the center of each pixel representing the sampling location. Cell size is typically 50 meters, although several water quality strata are at 200 meter cell size.
thumbnail
This data set consists of monthly averages of soil and litter properties. Rows are grouped in the following order: year, month, vegetation type, plot ID. Within a single month five plots were sampled within each of the 2 vegetation types (10 plots total). Columns F+ represent individual measurements.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....


map background search result map search result map 2010 UMRS Color Infrared Aerial Photo Mosaic - Mississippi River, Pool 10 2010 UMRS Color Infrared Aerial Photo Mosaic - Mississippi River, Pool 13 North UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach 2000 UMRS Land Cover Land Use--Pool 08 Illinois River, Brandon Pool 0.5m, Elwood Quad, Contours LTRM Water Quality Sampling Strata UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Open River 2 UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 20 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Illinois River Lockport Pool UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 15 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Illinois River Starved Rock Pool UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 01 Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 01 UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 15 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Illinois River Starved Rock Pool Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River 2000 UMRS Land Cover Land Use--Pool 08 2010 UMRS Color Infrared Aerial Photo Mosaic - Mississippi River, Pool 13 North UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 20 2010 UMRS Color Infrared Aerial Photo Mosaic - Mississippi River, Pool 10 UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Illinois River Lockport Pool UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Open River 2 LTRM Water Quality Sampling Strata