Skip to main content
Advanced Search

Filters: Categories: Publication (X) > Extensions: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northwest CASC > FY 2014 Projects ( Show direct descendants )

38 results (74ms)   

Filters
Date Range
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after wildfire by providing habitat and seed sources. With increasing fire activity, there is speculation that fire intensity and...
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study, which were burned by two wildfires in 2012 in the Cascade mountains of central Washington, USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites sampled following the 2012...
Public Summary: The area burned by wildfires is expected to increase in many watersheds of the world over the next century as a function of climate change. Increased sedimentation due to soil erosion in burned watersheds can negatively impact downstream aquatic ecosystems and the quality and supply of water. At least 65% of the water supply in the western USA originates in watersheds covered by trees, shrubs, and/or grasses that are prone to wildfire16. Understanding how changing fire frequency, extent, and location will affect watersheds, reservoirs, and the ecosystem services they supply to communities is therefore of great societal importance. A primary threat to socio-ecological systems in this region from...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.11144/full): The extensive forests that cover the mountains of the Pacific Northwest, USA, modify snow processes and therefore affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate, topography, and land cover and are therefore subject to substantial temporal and spatial variability. We utilize multiple years of snow observations from across the region to assess forest-snow interactions in the relatively warm winter conditions characteristic of the maritime and maritime-continental climates. We (1) quantify the difference in snow magnitude and disappearance timing...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015WR017873/abstract): Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011–2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations...
Abstract (from http://www.publish.csiro.au/WF/WF16165): Interannual variability in burn severity is assessed across forested ecoregions of the western United States to understand how it is influenced by variations in area burned and climate during 1984–2014. Strong correlations (|r| > 0.6) between annual area burned and climate metrics were found across many of the studied regions. The burn severity of individual fires and fire seasons was weakly, but significantly (P < 0.05), correlated with burned area across many regions. Interannual variability in fuel dryness evaluated with fuel aridity metrics demonstrated weak-to-moderate (|r| >0.4) relationships with regional burn severity, congruent with but weaker than...
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...
Abstract (from http://jcom.sissa.it/archive/15/01/JCOM_1501_2016_A01): Whereas the evolution of snow cover across forested mountain watersheds is difficult to predict or model accurately, the presence or absence of snow cover is easily observable and these observations contribute to improved snow models. We engaged citizen scientists to collect observations of the timing of distributed snow disappearance over three snow seasons across the Pacific Northwest, U.S.A. . The primary goal of the project was to build a more spatially robust dataset documenting the influence of forest cover on the timing of snow disappearance, and public outreach was a secondary goal. Each year's effort utilized a different strategy, building...
The Northwest Climate Science Conference (NW CSC) annually brings together researchers and practitioners from around the Pacific Northwest to a conference to discuss scientific results, challenges, and solutions related to climate impacts on people, natural resources, and infrastructure in the region. The NW CSC's annual conference is the region's premier opportunity for a cross-disciplinary exchange of knowledge and ideas about regional climate, climate impacts, and climate adaptation science and practice. The conference also provides a forum for discussing emerging policy and management goals, objectives, and information needs related to regional climate impacts and adaptation. Conference participants include...
Public land managers face the daunting task of incorporating climate change vulnerability assessments into their land use planning. This NW CSC project developed decision support tools to guide resource managers through the process of including future climate projections, climate change vulnerability assessments, and adaptation response strategies and tactics into ongoing and existing planning efforts such as FS forest plan revisions and individual project plans. The tools were developed and tested through direct engagement with resource managers. The tools guide participants through a step-wise process that provides a structured framework to help managers (1) integrate climate projections with other local information...
Abstract (from http://www.bioone.org/doi/abs/10.3955/046.089.0305): It is hypothesized that climate impacts forest mosaics through dynamic ecological processes such as wildfires. However, climate-fire research has primarily focused on understanding drivers of fire frequency and area burned, largely due to scale mismatches and limited data availability. Recent datasets, however, allow for the investigation of climate influences on ecological patch metrics across broad regions independent of area burned and at finer scale. One area of particular interest is the distribution of fire refugia within wildfire perimeters. Although much recent research emphasis has been placed on high-severity patches within wildfires,...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0378112716308532): Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus...
Abstract (from http://iopscience.iop.org/article/10.1088/1748-9326/aa6f94/meta): High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003–2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We...
Abstract (from http://www.nature.com/nclimate/journal/v5/n9/full/nclimate2699.html): Contemporary climate change is causing large shifts in biotic distributions1, which has the potential to bring previously isolated, closely related species into contact2. This has led to concern that hybridization and competition could threaten species persistence3. Here, we use bioclimatic models to show that future range overlap by the end of the century is predicted for only 6.4% of isolated, congeneric species pairs of New World birds, mammals and amphibians. Projected rates of climate-induced overlap are higher for birds (11.6%) than for mammals (4.4%) or amphibians (3.6%). As many species will have difficulty tracking shifting...
Abstract (from ScienceDirect): Altered climate and changing fire regimes are synergistically impacting forest communities globally, resulting in deviations from historical norms and creation of novel successional dynamics. These changes are particularly important when considering the stability of a keystone species such as quaking aspen (Populus tremuloides Michx.), which contributes critical ecosystem services across its broad North American range. As a relatively drought intolerant species, projected changes of altered precipitation timing, amount, and type (e.g. snow or rain) may influence aspen response to fire, especially in moisture-limited and winter precipitation-dominated portions of its range. Aspen is...
When the Earth experiences changes in climate, wildlife respond by moving – species adjust their ranges to stay within climatically suitable habitat, moving out of areas that become too hot or otherwise inhospitable, and moving into areas that become newly hospitable. However, climate change is now proceeding so quickly that it is becoming difficult for species to move fast enough to keep pace. In addition, today’s landscapes feature significant barriers to wildlife movement due to human land use (e.g., highways, cities, agriculture). Such is the case in the region surrounding the border of Washington state, USA, and British Columbia, Canada, where increasing development pressure and limited coordination of land...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0034425716303261): Wildfires shape the distribution and structure of vegetation across the inland northwestern United States. However, fire activity is expected to increase given the current rate of climate change, with uncertain outcomes. A fire impact that has not been widely addressed is the development of unburned islands; areas within the fire perimeter that do not burn. These areas function as critical ecological refugia for biota during or following wildfires, but they have been largely ignored in methodological studies of remote sensing assessing fire severity under the assumption that they will be detected by algorithms for delineating fire...
This project identifies priority areas in the Columbia Plateau Ecoregion to implement conservation 4 strategies for riverine and riparian habitat. This is tailored towards the Arid Lands Initiative (ALI) conservation goals and objectives, and provides the foundation for adaptation to a changing climate. This project adopts a “zoned” approach to identifying focal areas, connectivity management zones and zones for riparian habitat and ecological representation. Through a series of workshops and webinars, the ALI articulated its freshwater conservation goals and targets. Key aspects of these goals included: a focus on non-anadromous salmonid (salmon and steelhead) species, include riparian birds and waterfowl as key...
Abstract (from Oxford Academic): Fire refugia are landscape elements that remain unburned or minimally affected by fire, thereby supporting postfire ecosystem function, biodiversity, and resilience to disturbances. Although fire refugia have been studied across continents, scales, and affected taxa, they have not been characterized systematically over space and time, which is crucial for understanding their role in facilitating resilience in the context of global change. We identify four dichotomies that delineate an overarching conceptual framework of fire refugia: unburned versus lower severity, species-specific versus landscape-process characteristics, predictable versus stochastic, and ephemeral versus persistent....
Abstract (from esa): Western U.S. wildfire area burned has increased dramatically over the last half‐century. How contemporary extent and severity of wildfires compare to the pre‐settlement patterns to which ecosystems are adapted is debated. We compared large wildfires in Pacific Northwest forests from 1984 to 2015 to modeled historic fire regimes. Despite late twentieth‐century increases in area burned, we show that Pacific Northwest forests have experienced an order of magnitude less fire over 32 yr than expected under historic fire regimes. Within fires that have burned, severity distributions are disconnected from historical references. From 1984 to 2015, 1.6 M ha burned; this is 13.3–18.9 M ha less than expected....