Skip to main content
Advanced Search

Filters: Types: Citation (X) > Categories: Publication (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Alaska CASC > FY 2019 Projects ( Show direct descendants )

4 results (71ms)   

View Results as: JSON ATOM CSV
Abstract (from Global Change Biology): Mountain watersheds often contain a mosaic of glacier-, snow-, and rain-fed streams that have distinct hydrologic, temperature, and biogeochemical regimes. However, as glaciers diminish and precipitation shifts from snow to rain, the physical and chemical characteristics that make glacial or snowmelt streams distinct from rain-fed streams will fade. Among the unforeseen consequences of this hydrologic homogenization could be the loss of unique food webs that sustain aquatic consumers. To explore the impacts of a melting cryosphere on stream food webs, we parameterized an aquatic food web model with empirical physicochemical data from glacier-, snow-, and rain-fed streams in...
Categories: Publication; Types: Citation
The melting cryosphere adds heterogeneity to the abiotic and biotic characteristics of many high latitude and montane rivers. However, climate change threatens the cryosphere's persistence in many regions. While existing research has explored the impacts of cryospheric loss on the diversity and structure of freshwater communities, implications for functional traits of communities, such as production of aquatic invertebrates, remain unresolved. Here, we quantified aquatic invertebrate community structure and secondary production in southeast Alaska (USA) streams that represent a meltwater to non-meltwater gradient, including streams fed primarily by: (1) glacier-melt, (2) snowmelt, (3) rainfall, and (4) a combination...
Categories: Publication; Types: Citation
Abstract (from Limnology and Oceanography): Meltwater contributions to watersheds are shrinking as glaciers disappear, altering the flow, temperature, and biogeochemistry of freshwaters. A potential consequence of this landscape change is that streamflow patterns within glacierized watersheds will become more homogenous, potentially altering the capacity of watersheds to support Pacific salmon. To assess heterogeneity in stream habitat quality for juvenile salmon in a watershed in the Alaska Coast Mountains, we collected organic matter and invertebrate drift and measured streamwater physical and biogeochemical properties over the main runoff season in two adjacent tributaries, one fed mainly by rain and the other...
Categories: Publication; Types: Citation
Streamflow controls many freshwater and marine processes, including salinity profiles, sediment composition, fluxes of nutrients, and the timing of animal migrations. Watersheds that border the Gulf of Alaska (GOA) comprise over 400,000 km2 of largely pristine freshwater habitats and provide ecosystem services such as reliable fisheries for local and global food production. Yet no comprehensive watershed‐scale description of current temporal and spatial patterns of streamflow exists within the coastal GOA. This is an immediate need because the spatial distribution of future streamflow patterns may shift dramatically due to warming air temperature, increased rainfall, diminishing snowpack, and rapid glacial recession....
Categories: Publication; Types: Citation