Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Types: OGC WFS Layer (X) > Types: Downloadable (X) > Types: Raster (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > Types: Map Service (X)

118 results (109ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) Ryals, G. N., 1980, Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980: U.S. Geological...
thumbnail
This USGS Data Release represents geospatial and tabular data for the Nisqually River Delta historical habitat mapping. The data release was produced in compliance with the new 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. The dataset consists of 9 separate items: 1. Forest Change (raster dataset) 2. Forest Type Change (raster dataset) 3. Functional Pathway Change (raster dataset) 4. 1957 Habitat Map (raster dataset) 5. 1980 Habitat Map (raster dataset) 6. 2015 Habitat Map (raster dataset) 7. 1980 Species Map (raster dataset) 8. 2015 Species Map (raster dataset) 9. Wetland Change (raster dataset) These data support...
thumbnail
The supplemental data presented here contains three raster datasets representing the evapotranspiration (ET) units for northern, southern, and western regions of Harney Basin (raster datasets in .tif format) and one vector dataset of ET-unit observations used to delineate ET units (vector dataset in .shp format). Eleven ET units were identified from ET-unit observations of land cover and include bare soil or playa (1), marsh (2), dry meadow (3), wet meadow (4), open water (5), riparian (6), mixed shrubland (7), phreatophyte shrubland (8), xerophyte shrubland (9), sagebrush shrubland (10), and xerophyte grassland (11). Irrigated areas are excluded from ET units. Unpublished land-cover datasets collected by the U.S....
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 2 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment C - Lake Ontario...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment F - Lake Ontario...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Muscoot Reservoir during June 2017 and November 2019. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Staunton 30 x 60 minute quadrangle in West Virginia and Virginia. The source data used to construct this imagery consists of 1-meter lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2015 and 2021. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
The depths to a high and average water table below the land surface were estimated across the Clover Creek watershed in Pierce County, Washington. Groundwater model simulations provided initial estimates of water-table depths for the analysis. To provide optimized, data-driven estimates of these depths, a continuous bias correction surface was applied to model output according to differences between simulated and observed water levels at observation wells.
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Pittsburgh East 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution Lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2020 and 2021 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
The Ozark Plateau aquifer system stretches across approximately 70,000 square miles (mi2) of Arkansas, Missouri, Kansas and Oklahoma, and is composed of many hydrogeologic units, such as the Boone aquifer and the Roubidoux aquifer. However, this data release is focused on only 11,000 mi2 in northern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. The Boone aquifer covers approximately 10,700 mi2 of this area, and the Roubidoux aquifer covers the 11,000 mi2 area entirely. These aquifers are mostly made of Mississippian-aged and Ordovician-aged carbonate rock, and serve as the main sources of fresh groundwater in northeastern Oklahoma (Imes and Emmett, 1994). In 2017, the U.S. Geological...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at East Branch Reservoir May 2018, June 2018, and October 2019. Depth data were collected primarily with a multibeam echosounder; additional bathymetry points were measured using an acoustic Doppler current profiler (ADCP). Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements...
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer. Brantly, J.A., Seanor, R.C., McCoy, K.L., 2002, Hydrogeology and potentiometric surface of the Sparta aquifer in northern Louisiana, October 1996: U.S. Geological...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 10 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This data release provides a map of the time-averaged shear-wave velocity in the upper 30 m (Vs30) for California using the method described by Thompson and others (2014). There are two adjustments to the algorithm described by Thompson and others (2014), which is built on the geology-based Vs30 map by Wills and Clahan (2006). In this data release, we use the Wills and others (2015) updated geology-based Vs30 map. The second change is that we have adjusted the kriging procedure so that measured Vs30 values do not affect the predictions across distinctly different geologic units. July 2022 Update (ver. 2.0) Resolution is now 3 arcseconds instead of 7.5 arcseconds Fixed a code error that prevented some of the Vs30...


map background search result map search result map Historical Time-series Classification of Habitat for 1957, 1980 and 2015 in the Nisqually River Delta, Washington Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years An Updated Vs30 Map for California with Geologic and Topographic Constraints (ver. 2.0, July 2022) Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1996 from "Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996" points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015 Data used to describe hydrogeologic units and create contour maps and cross sections of the Boone and Roubidoux Aquifers, northeastern Oklahoma points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014 Lake Koocanusa Digital Elevation Model (DEM), Lincoln County, Montana Geospatial bathymetry datasets for East Branch Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for Muscoot Reservoir, New York, 2017 to 2019 Segment C - Flood inundation map geospatial datasets for Lake Ontario, New York Segment F - Flood inundation map geospatial datasets for Lake Ontario, New York (2) Evapotranspiration Units Delineated by Region in the Harney Basin Groundwater Evapotranspiration Area and Evapotranspiration-Unit Observations, Southeastern Oregon Enhanced Terrain Imagery of the Pittsburgh East 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution High and average water table estimates for Clover Creek watershed, Pierce County, Washington Enhanced Terrain Imagery of the Staunton 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Geospatial bathymetry datasets for East Branch Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for Muscoot Reservoir, New York, 2017 to 2019 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014 High and average water table estimates for Clover Creek watershed, Pierce County, Washington Segment F - Flood inundation map geospatial datasets for Lake Ontario, New York points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 Lake Koocanusa Digital Elevation Model (DEM), Lincoln County, Montana Enhanced Terrain Imagery of the Pittsburgh East 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Staunton 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Historical Time-series Classification of Habitat for 1957, 1980 and 2015 in the Nisqually River Delta, Washington (2) Evapotranspiration Units Delineated by Region in the Harney Basin Groundwater Evapotranspiration Area and Evapotranspiration-Unit Observations, Southeastern Oregon Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1996 from "Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996" Data used to describe hydrogeologic units and create contour maps and cross sections of the Boone and Roubidoux Aquifers, northeastern Oklahoma An Updated Vs30 Map for California with Geologic and Topographic Constraints (ver. 2.0, July 2022) Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years