Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > partyWithName: Natural Hazards (X) > Types: Shapefile (X)

231 results (68ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, geometry, continuity, and vertical sequence. Faults were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2010 and 2012.
This dataset includes one vector shapefile delineating the position of the shorelines at Barter Island, Alaska spanning seven decades, between the years 1947 and 2020. Shoreline positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the shoreline through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each shoreline, establishing measurement points used...
thumbnail
This part of DS 781 presents data for the bathymetric contours for the Offshore of Aptos map area, California. The vector data file is included in "Contours_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., Finlayson, D.P., and Krigsman, L.M., (G.R. Cochrane and S.A. Cochran, eds.), 2016, California State Waters Map Series—Offshore of Aptos, California: U.S. Geological Survey Open-File Report 2016–1025, 43 p., 10 sheets, scale...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aptos, CMHRP, Coastal and Marine Hazards and Resources Program, Continental/Island Shelf, Fisheries, All tags...
thumbnail
This portion of the data release contains information on vibracores that were collected by the U.S. Geological Survey in Anahola Valley, Kaua'i, Hawai'i in 2015. Sites were cored in order to identify potential tsunami deposits and describe wetland stratigraphy. These vibracores contain mud, peat, volcanic sands, and carbonate sands, reflecting deposition in a variety of coastal environments. PDF files describe eight (8) vibracores that were split, imaged by a line-scanner camera, scanned to generate computed tomagraphic (CT) images, and visually described. Another pdf file (Anahola_cores_legend.pdf) contains a core-log legend. A comma-delimited text file (Anahola_sand_thickness.csv) includes tabulated information...
thumbnail
Historical water and gas chemistry data from geothermal areas are important for detecting long-term patterns, informing geothermal energy exploration, development, and use, and for contextualizing more recent data. The U.S. Geological survey has published water and gas chemistry data from geothermal areas in the western United States, which is primarily available as scanned PDF files. This makes the data difficult to access or include in large-scale data analysis. This data release provides digitized and reformatted data from 20 previously published U.S. Geological Survey Open-File reports and journal articles, representing 1867 water chemistry samples and 313 gas chemistry samples. All data have been standardized...
In develpoing the hazard model for South America, the USGS considered the ground motion models (GMM) used for the conterminous United States because most of the equations consider global earthquakes and because the U.S. and South America are seismically quite similar, with the potential for active subduction, deep intraslab, crustal, and craton earthquakes. Included here is a table that summarizes the GMMs selected for each of the earthquake types and the weight applied within the model.
thumbnail
We used matched filter detection and multiple-event relocation techniques to characterize the spatiotemporal evolution of the sequence. Our analysis is from the 14 closest seismic stations to the earthquake sequence, which included seven permanent stations from the Montana Regional Seismic Network, one permanent station from the ANSS backbone network and three temporary seismic stations deployed by the USGS within four days after the mainshock. A catalog of 685 well-located earthquakes larger than M 1 occurring Between 5 July and 15 October 2017 were relocated using a hypocentroid decomposition (HD) multiple-event relocation approach. The resulting dataset had an average epicentral and depth uncertainties (90% confidence)...
thumbnail
This data release supersedes version 1.0, published in September 2022 at https://doi.org/10.5066/P9XEFRYR. Versioning details are documented in the accompanying Dunex_revision_history.txt file. These data provide grain-size measurements from sediment samples collected as part of the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study nearshore coastal processes during storm events. USGS participation in DUNEX will contribute new measurements and models that will increase our understanding of storm impacts to coastal environments, including hazards...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the USGS Digital Shoreline Analysis System (DSAS), version 5.1 software to calculate rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated...
thumbnail
This dataset contains linework of lineaments mapped on 4 <1-m-resolution lidar datasets and the 10-m-resolution National Elevation Dataset digital elevation models in the Pit River region of northeastern California. Lineaments are classified by confidence in tectonic origin, map certainty, and the ages of the bedrock and surficial deposits they cross.
thumbnail
The radiogenic isotope ratios of strontium (Sr) and uranium (U), specifically 87Sr/86Sr and 234U/238U, are useful tracers of water-rock interactions. Sr isotopic compositions in groundwater are mostly controlled by dissolution or exchange with Sr contained in aquifer rocks whereas the U isotopic compositions are more controlled by chemical and kinetic processes during groundwater flow. Insights into groundwater circulation patterns through the shallow subsurface at Yellowstone National Park can be aided by investigations of these isotopes. This data release contains tables with new isotope data consisting of concentrations (Sr, U) and radiogenic-isotope compositions (87Sr/86Sr, 234U/238U) for water samples from...
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as considerable (MMI ≥ VIII) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VIII is equivalent to peak ground acceleration of 0.40g and 1.0-second horizontal spectral acceleration of 0.50g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic...
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as slight (MMI ≥ VI) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VI is equivalent to peak ground acceleration of 0.12g and 1.0-second horizontal spectral acceleration of 0.1g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic data...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 10 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This data set is derived from the original 2005 data collected over the southern San Andreas and San Jacinto fault zones in southern California, USA. These data have provided a fundamental resource for study of active faulting in southern California since they were released in 2005. However, these data were not classified in a manner that allowed for easy differentiation between bare ground surfaces and the objects and vegetation above that surface. This reprocessed (classified) dataset allows researchers easy and direct access to a "bare-earth" digital elevation data set as gridded half-meter resolution rasters (elevation and shaded relief), "full-feature" digital elevation models as gridded one-meter resolution...
thumbnail
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...


map background search result map search result map Contours--Offshore Aptos, California Classified point cloud and gridded elevation data from the 2005 B4 Lidar Project, southern California, USA Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years Vibracore photographs, computed tomography scans, and core-log descriptions from Anahola Valley, Kaua'i, Hawai'i Spatiotemporal Analysis of the Foreshock-Mainshock-Aftershock Sequence of the 6 July 2017 M5.8 Lincoln, Montana, Earthquake - Data Release Faults--Punta Gorda to Point Arena, California Trackline navigation collected with a Reson 7160 Multibeam echosounder in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA (Esri polyline shapefile, UTM 8 WGS 84) DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Coast Guard Beach, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cobb Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fisherman Island, VA, 2014 Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020 Footprints and producers of source data used to create central portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM) Shoreline intersects for the coast of Puerto Rico's main island generated by the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Lineament mapping from lidar datasets in the Pit River region, northeastern California Sr and U concentrations and radiogenic isotope compositions (87Sr/86Sr, 234U/238U) of thermal waters, streamflow, travertine, and rock samples along with U-Th disequilibrium ages for travertine deposits from various locations in Yellowstone National Park, USA Water and gas chemistry data from wells and hot springs in the Western USA, 1930 – 2006 Grain-size analysis data of sediment samples from the beach and nearshore environments at the Pea Island National Wildlife Refuge DUNEX site, North Carolina in 2021 Vibracore photographs, computed tomography scans, and core-log descriptions from Anahola Valley, Kaua'i, Hawai'i Grain-size analysis data of sediment samples from the beach and nearshore environments at the Pea Island National Wildlife Refuge DUNEX site, North Carolina in 2021 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fisherman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Coast Guard Beach, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cobb Island, VA, 2014 Contours--Offshore Aptos, California Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020 Footprints and producers of source data used to create central portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM) Lineament mapping from lidar datasets in the Pit River region, northeastern California Sr and U concentrations and radiogenic isotope compositions (87Sr/86Sr, 234U/238U) of thermal waters, streamflow, travertine, and rock samples along with U-Th disequilibrium ages for travertine deposits from various locations in Yellowstone National Park, USA Spatiotemporal Analysis of the Foreshock-Mainshock-Aftershock Sequence of the 6 July 2017 M5.8 Lincoln, Montana, Earthquake - Data Release Faults--Punta Gorda to Point Arena, California Shoreline intersects for the coast of Puerto Rico's main island generated by the Digital Shoreline Analysis System version 5.1 (ver. 2.0, March 2023) Trackline navigation collected with a Reson 7160 Multibeam echosounder in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA (Esri polyline shapefile, UTM 8 WGS 84) Classified point cloud and gridded elevation data from the 2005 B4 Lidar Project, southern California, USA Water and gas chemistry data from wells and hot springs in the Western USA, 1930 – 2006 Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years