Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Types: Map Service (X) > partyWithName: U.S. Geological Survey (X) > Types: Downloadable (X)

1,133 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset of anticlines is intended primarily for reference; it includes major structures such as those shown on Plate 2, Principal structural features, Gulf of Mexico Basin (compiled by T.E. Ewing and R.F. Lopez), in Volume J, The Geology of North America (1991). This dataset contains basic data and interpretations developed and compiled by the U.S. Geological Survey's Framework Studies and Assessment of the Gulf Coast Project. Other major sources of data include publicly available information from state agencies as well as publications of the U.S. Geological Survey and other scientific organizations. In cases where company proprietary data were used to produce various derivatives such as contour surfaces, the...
thumbnail
Region(s) of distribution of Fourhorn Poacher (Hypsagonus quadricornis) (Valenciennes, 1829) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic...
thumbnail
Region(s) of distribution of Inconnu (Stenodus leucichthys) (Güldenstadt, 1772) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where...
thumbnail
Region(s) of distribution of Eyeshade Sculpin (Nautichthys pribilovius) (Jordan & Gilbert, 1898) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent...
thumbnail
Region(s) of distribution of Saffron Cod (Eleginus gracilis) (Tilesius, 1810) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where...
thumbnail
Region(s) of distribution of Chinook Salmon (Oncorhynchus tshawytscha) (Walbaum, 1792) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas...
thumbnail
Region(s) of distribution of Fourhorn Sculpin (Myoxocephalus quadricornis) (Linnaeus, 1758) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic...
thumbnail
Region(s) of distribution of Hamecon (Artediellus scaber) Knipowitsch, 1907 in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where reliable...
thumbnail
Airborne geophysical surveys were conducted in the eastern Adirondacks from Dec. 7, 2015 - Dec. 21, 2015, by Goldak Airborne Surveys. The area was flown along a draped surface with a nominal survey height above ground of 200 meters. The flight line spacing was 250 meters for traverse lines and 2500 meters for control lines. Here we present downloadable magnetic and radiometric (gamma spectrometry) data from those surveys as image (Geotiff) and flight line data (csv format). Background The Eastern Adirondacks region was known for iron mining in the 1800's and 1900's but it also contains deposits of rare earth minerals. Rare earth minerals are used in advanced technology such as in cell phones, rechargeable batteries...
thumbnail
Gravity data were collected from 2006 through 2015 to assist in mapping subsurface geology in the southern San Luis Basin, northern New Mexico. This data release provides principal facts for 566 new gravity stations that were acquired to fill in gaps in the existing public gravity data coverage.
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
thumbnail
The U.S. Geological Survey obtained measurements of channel geometry, flow velocity, and river discharge from five rivers in Alaska September 18–20, 2016, to support research on remote sensing of river discharge. The streamflow data were acquired from the Knik, Matanuska, Chena, and Salcha Rivers and Montana Creek using TeleDyne RD Instruments Acoustic Doppler Current Profilers (ADCPs), including the RioPro, StreamPro, and RiverRay models. The original *.mmt and *.pd0 format files are provided in this data release. This data release supports the following article: Legleiter, C.J., Kinzel, P.J., and Nelson, J.M., 2017, Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various...
thumbnail
During Hurricane Irma, Florida and Georgia experienced substantial impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses from hurricanes result in increased vulnerability of coastal regions, including densely populated areas. Erosion may put critical infrastructure at risk of future flooding and may cause economic loss. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program is working to assess shoreline erosion along the southeast U.S. coastline and analyze its implications for future vulnerability.
thumbnail
This data set consists 23 transient electromagnetic (TEM) soundings collected by the U.S. Geological Survey in June 2020 as part of the Umatilla Indian Reservation Geothermal Resources Assessment: Phase 2 project. TEM data were collected in 100 x 100 m loops or 40 x 40 m loops along 4 profiles in areas of interest for geothermal potential. Files included in this publication include measured TEM soundings and 1-D resistivity models.
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Data on 17 metrics of shale gas development in the Pennsylvania portion of the Upper Susquehanna River basin that was collated from a variety of sources and summarized at the upstream catchment scale. Data were also standardized by upstream area and transformed into rank scores based on metric distribution and then summarized into a Disturbance Intensity Index (DII). See Maloney et al. 2018 for detailed descriptions of each data sets and limitations of data. (Maloney, K. O., J. A. Young, S. P. Faulkner, A. Hailegiorgis, E. T. Slonecker, and L. E. Milheim. 2018. A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A. Science...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
The 2018 lower East Rift Zone eruption of Kilauea Volcano began in the late afternoon of 3 May, with fissure 1 opening and erupting lava onto Mohala Street in the Leilani Estates subdivision, part of the lower Puna District of the Island of Hawai'i. For the first week of the eruption, relatively viscous lava flowed only within a kilometer (0.6 miles) of the fissures within Leilani Estates, before activity shifted downrift (east-northeast) and out of the subdivision during mid-May. Around 18 May, activity along the lower East Rift Zone intensified, and fluid lava erupting at higher effusion rates from the downrift fissures reached the ocean within two days. Near the end of May, this more vigorous activity shifted...


map background search result map search result map Elevation Contours, Cannonsville Reservoir, 2015 Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Airborne Geophysical Surveys over the Eastern Adirondacks, New York State Principal facts of gravity data in the southern San Luis Basin, northern New Mexico ADCP data from rivers in Alaska, September 18–20, 2016 Marine Arctic point distribution of Fourhorn Poacher (Hypsagonus quadricornis) (Valenciennes, 1829) Marine Arctic polygon distribution of Eyeshade Sculpin (Nautichthys pribilovius) (Jordan & Gilbert, 1898) Marine Arctic polygon distribution of Chinook Salmon (Oncorhynchus tshawytscha) (Walbaum, 1792) Marine Arctic polygon distribution of Inconnu (Stenodus leucichthys) (Güldenstadt, 1772) Tsunami Evacuation Travel Time Map for Humboldt County, CA, 2010, for Bridges Intact and a Fast Walking Speed Shale gas data used in development of the Disturbance Intensity Index for the Pennsylvania portion of the Upper Susquehanna River basin in Maloney et al. 2018 1815–1823 Kamakaia lava flow extent Kilauea 2018 lower East Rift Zone eruption - fissure 14 lava flow Anticlines in the US Gulf Coast [anticlineg] Uncertainty of forecasted shoreline positions for Florida and Georgia Magnetotelluric and TEM Data from the Umatilla Indian Reservation Geothermal Resources Assessment: Phase 2, 2020: TEM data Kilauea 2018 lower East Rift Zone eruption - fissure 14 lava flow Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Magnetotelluric and TEM Data from the Umatilla Indian Reservation Geothermal Resources Assessment: Phase 2, 2020: TEM data 1815–1823 Kamakaia lava flow extent Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Elevation Contours, Cannonsville Reservoir, 2015 Principal facts of gravity data in the southern San Luis Basin, northern New Mexico Shale gas data used in development of the Disturbance Intensity Index for the Pennsylvania portion of the Upper Susquehanna River basin in Maloney et al. 2018 ADCP data from rivers in Alaska, September 18–20, 2016 Uncertainty of forecasted shoreline positions for Florida and Georgia Anticlines in the US Gulf Coast [anticlineg] Marine Arctic polygon distribution of Inconnu (Stenodus leucichthys) (Güldenstadt, 1772) Marine Arctic point distribution of Fourhorn Poacher (Hypsagonus quadricornis) (Valenciennes, 1829) Marine Arctic polygon distribution of Eyeshade Sculpin (Nautichthys pribilovius) (Jordan & Gilbert, 1898) Marine Arctic polygon distribution of Chinook Salmon (Oncorhynchus tshawytscha) (Walbaum, 1792)