Skip to main content
Advanced Search

Filters: Types: OGC WMS Service (X) > Types: OGC WMS Layer (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > South Central CASC > FY 2013 Projects ( Show direct descendants )

10 results (10ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The sky island forests of the southwestern United States are one of the most diverse temperate forest ecosystems in the world, providing key habitat for migrating and residential species alike. Black bear, bighorn sheep, mule deer, and wild turkey are just a few of the species found in these isolated mountain ecosystems that rise out of the desert landscape. However, recent droughts have crippled these ecosystems, causing significant tree death. Climate predictions suggest that this region will only face hotter and drier conditions in the future, potentially stressing these ecosystems even further. Simple models predict that vegetation will move to cooler and wetter locations in response to this warming. However,...
thumbnail
The South Central U.S. encompasses a wide range of ecosystem types and precipitation patterns. Average annual precipitation is less than 10 inches in northwest New Mexico but can exceed 60 inches further east in Louisiana. Much of the region relies on warm-season convective precipitation – that is, highly localized brief but intense periods of rainfall that are common in the summer. This type of precipitation is a significant driver of climate and ecosystem function in the region, but it is also notoriously difficult to predict since it occurs at such small spatial and temporal scales. While global climate models are helpful for understanding and predicting large-scale precipitation trends, they often do not capture...
thumbnail
A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1949 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling (Viger and Bock, 2014). Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized...
thumbnail
Understanding the changes in the distribution and quantity of, and demand for, water resources in response to a changing climate is essential to planning for, and adapting to, future climatic conditions. In order to plan for future conditions and challenges, it is crucial that managers understand the limitations and uncertainties associated with the characterization of these changes when making management decisions. Changes in consumptive water use (water removed without return to a water resources system) will change streamflow, impacting downstream water users, their livelihoods, as well as aquatic ecosystems. Historical changes in available water may be attributed to changes in precipitation; but these changes...
thumbnail
Currently, maintaining appropriate flows to support biological integrity is difficult for larger riverine ecosystems. Climate change, through increased temperature, reduced rainfall, and increased rainfall intensity, is expected to reduce water availability and exacerbate the maintenance of ecological flows in the Arkansas-Red River basin. Understanding the nexus among climate change effects on streamflow, water quality, and stream ecology for watersheds in the Arkansas-Red River Basin can be achieved using currently existing science and technology. This nexus approach will strengthen adaptive-management strategies that focus on shared ecosystem conservation watershed targets. This approach will provide natural-resource...
thumbnail
When climate models are developed, researchers test how well they replicate the climate system by using them to model past climate. Ideally, the model output will match the climate conditions that were actually recorded in the past, indicating that the model correctly characterizes how the climate system works and can be used to reliably project future conditions. However, this approach assumes that models that reliably project past climate conditions will accurately predict future climate conditions, even though the climate system might have changed. This research contributes to generating more reliable local-scale climate projections by testing the assumption that the climatological relationships which existed...
thumbnail
Coastal wetlands are one of the most economically valuable ecosystems in the world. In the United States, the ecosystem services provided by wetlands are worth billions of dollars and include flood protection, erosion control, seafood, water quality enhancement, carbon storage, recreation, and wildlife habitat. Unfortunately, these ecosystems are also highly sensitive to changing climate conditions. Past research on climate impacts to coastal wetlands have concentrated primarily on sea-level rise, largely ignoring the important influence of changing temperature and precipitation patterns. Understanding the impact of temperature and precipitation on coastal wetlands can help natural and cultural resource managers...
thumbnail
The Red River Basin is a vital source of water in the South Central U.S., supporting ecosystems, drinking water, agriculture, tourism and recreation, and cultural ceremonies. Stretching from the High Plains of New Mexico eastward to the Mississippi River, the Red River Basin encompasses parts of five states – New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. Further, 74% of the jurisdictional boundaries of the Chickasaw and Choctaw Tribes are located within the basin. Water resources in the basin have been stressed in recent years due to a multi-year drought and increasing demands for consumptive use by metropolitan areas in Oklahoma and Texas. Unfortunately, currently available projections of future precipitation...
thumbnail
Led by the consortium of the South Central Climate Science Center (SC CSC), this project developed and implemented a professional development workshop for graduate students, post-docs, and early career researchers within the SC CSC region. The objectives were to: (1) introduce participants to the goals, structure, and unique research-related challenges of the SC-CSC and its place within the U.S. Department of the Interior and the larger CSC network, offering them insight into how their research fits into the broader research priority goals and its eventual applicability to end user needs across the region; (2) provide an opportunity for participants to present their research to fellow peers; (3) facilitate interdisciplinary...
thumbnail
Changing temperature and precipitation patterns in the South Central U.S are already having an impact on wildlife. Hotter and drier conditions are prompting some species to move in search of cooler conditions, while other species are moving into warmer areas that were once unsuitable for them. These changes in the distribution of wildlife populations present challenges for wildlife managers, hunters, tribal communities, and others who are making decisions about wildlife stewardship. This project examined the effect of shifting climate conditions on 20 species of conservation concern in the South Central United States. These species, which include the black-tailed prairie dog and the lesser prairie-chicken, were...


    map background search result map search result map Regional Graduate Student, Post-Doc, and Early Career Researcher Workshop Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S. Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Modeling the Effects of Climate and Land Use Change on Crucial Wildlife Habitat Impacts of Climate Change on Water Flows in the Red River Basin Testing Downscaled Climate Projections: Is Past Performance an Indicator of Future Accuracy? Establishing a Foundation for Understanding Climate Change Impacts on Coastal Wetland Ecosystems Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin Improving Representation of Extreme Precipitation Events in Regional Climate Models Monthly Water Balance Model Futures Predicting Sky Island Forest Vulnerability to Climate Change: Fine Scale Climate Variability, Drought Tolerance, and Fire Response Impacts of Climate Change on Water Flows in the Red River Basin Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin Establishing a Foundation for Understanding Climate Change Impacts on Coastal Wetland Ecosystems Modeling the Effects of Climate and Land Use Change on Crucial Wildlife Habitat Improving Representation of Extreme Precipitation Events in Regional Climate Models Regional Graduate Student, Post-Doc, and Early Career Researcher Workshop Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S. Testing Downscaled Climate Projections: Is Past Performance an Indicator of Future Accuracy? Monthly Water Balance Model Futures