Skip to main content
Advanced Search

Filters: Extensions: Raster (X) > Types: Downloadable (X)

Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) ( Show direct descendants )

129 results (14ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
View Results as: JSON ATOM CSV
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) Program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Dresden reach June 4 – 28, 2018.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. These information needs were highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment...
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). Backscatter is the acoustic reflectivity, which is the measure of energy obtained from the echo intensity, and can provide an indication about the nature of the river bottom and its physical character. Image analysis and classification of backscatter, with the combined datasets of bathymetry (and its derivatives) and ground truthing, can predict surficial substrate, or sediment type. For habitat analysis, these datasets were desired by the NPS to help inform and mitigate...
thumbnail
This dataset is a digital elevation model (DEM) of the bathymetry for six sites where known rock structures exist in the St. Croix River. The DEMs have a 10-cm resolution (Boom site is 0.5-m) to provide ultra-high-resolution elevations for investigating the use of hydroacoustic technologies for quantifying habitat for imperiled mussels Spectaclecase (Margaritifera monodonta) and Salamander (Simpsonaias ambigua) typically associated with rock structures (e.g., wing dams, revetment) in rivers. Bathymetry is essential for providing the depths and shapes of underwater terrain and it represents the three-dimensional features (or relief) of underwater terrain. Multibeam sonar data were collected using a Norbit integrated...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) Program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Wind fetch is defined as the unobstructed distance that wind can travel over water in a constant direction. Fetch is an important characteristic of open water because longer fetch can result in larger wind-generated waves. The larger waves, in turn, can increase shoreline erosion and sediment re-suspension. Wind fetches were calculated using the wind fetch model available from (http://www.umesc.usgs.gov/management/dss/wind_fetch_wave_models_2012update.html) for aquatic areas within the Upper Mississippi River System. This toolbox calculates effective wind fetch using the recommended procedure of the Shore Protection Manual (USACE 1984). A baseline conditions assessment of wind fetch was conducted to assist the...
Wind fetch is defined as the unobstructed distance that wind can travel over water in a constant direction. Fetch is an important characteristic of open water because longer fetch can result in larger wind-generated waves. The larger waves, in turn, can increase shoreline erosion and sediment re-suspension. Wind fetches were calculated using the wind fetch model available from (http://www.umesc.usgs.gov/management/dss/wind_fetch_wave_models_2012update.html) for aquatic areas within the Upper Mississippi River System. This toolbox calculates effective wind fetch using the recommended procedure of the Shore Protection Manual (USACE 1984). A baseline conditions assessment of wind fetch was conducted to assist the...
The objective of this work is to delineate areas in the Upper Mississippi River System where the combined effects of water clarity and water level fluctuation conditions are not limiting the establishment and persistence of submersed aquatic vegetation. We note that other factors, such as herbivory or high current velocity may actively prevent establishment of submersed aquatic vegetation in areas of the Upper Mississippi River System, and that this analysis is based on physical constraints imposed by water clarity and water level fluctuation only. Total suspended solids information was collected by the Upper Mississippi River Restoration program, and water level information was collected by the United State Army...
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
This data set represents initial forest communities developed for Isle Royale National Park. LANDIS-II requires an input data layer that contains the ages of each species cohort present within each cell of the landscape. To develop this layer, we matched the composition of forest inventory plots to a map of forest types, and randomly imputed U.S. Department of Agriculture Forest Inventory plots within each matching forest type
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the West Pit of Hanson Pits (where accessible) of the Marseilles reach June 25-26, 2018.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.


map background search result map search result map UMRR Pool 15 Topobathy UMRR Pool 16 Topobathy UMRR Dresden Reach Topobathy UMRR Marseilles Topobathy UMRS Floodplain Inundation Attributes - Pool 9 UMRS Floodplain Inundation Attributes - Pool 11 UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 25 UMRS Floodplain Inundation Attributes - Pool 26 Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Isle Royal National Park (ISRO): Initial Forest Communities of Isle Royale National Park Predicted number of years from 1993 - 2014 with conditions suitable for submersed aquatic vegetation based on light availability and water level fluctuations for the Upper Mississippi River System (lower submersed aquatic vegetation boundary elevation scenario) Mapped differences in weighted wind fetch distances within the Upper Mississippi River System between 2000 and 2010/2011 Mapped weighted wind fetch distances within the Upper Mississippi River System for 2010/2011 SACN Osceola Boat Landing: 2019 Backscatter (Acoustic Reflectivity) Data Mississippi National River and Recreation Area, Mississippi River Pool 1 Low-Resolution (5-meter) Bathymetry, 2019 St. Croix National Scenic Riverway, ADCP Flow Diffusion of the St. Croix River near Hudson, WI, 20181004 Bathymetry of select Rock Outcrops of the St. Croix River, May 2021 SACN Osceola Boat Landing: 2019 Backscatter (Acoustic Reflectivity) Data Bathymetry of select Rock Outcrops of the St. Croix River, May 2021 UMRR Pool 15 Topobathy Illinois River, Dresden, Sidescan Image Mosaic June 2018 UMRR Dresden Reach Topobathy Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 UMRR Pool 16 Topobathy UMRR Marseilles Topobathy UMRS Floodplain Inundation Attributes - Pool 9 UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 11 UMRS Floodplain Inundation Attributes - Pool 25 UMRS Floodplain Inundation Attributes - Pool 26 Isle Royal National Park (ISRO): Initial Forest Communities of Isle Royale National Park Predicted number of years from 1993 - 2014 with conditions suitable for submersed aquatic vegetation based on light availability and water level fluctuations for the Upper Mississippi River System (lower submersed aquatic vegetation boundary elevation scenario) Mapped differences in weighted wind fetch distances within the Upper Mississippi River System between 2000 and 2010/2011 Mapped weighted wind fetch distances within the Upper Mississippi River System for 2010/2011