Skip to main content
Advanced Search

Filters: Extensions: Shapefile (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: U.S. Geological Survey (X) > partyWithName: Marie K Bartlett (X) > Types: Shapefile (X) > Categories: Data (X) > partyWithName: Coastal and Marine Hazards and Resources Program (X)

28 results (11ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...


map background search result map search result map 2017-2018 lidar-derived mean high water shoreline for the coast of South Carolina 2010 lidar-derived mean high water shoreline for the coast of South Carolina Short-term shoreline change rate transects for the South Carolina coastal region using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for the coastal region of South Carolina generated to calculate long-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 SC Bias Feature – Feature class containing South Carolina proxy-datum bias information to be used in the Digital Shoreline Analysis System 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Fear to the South Carolina border (NCwest) Long and short-term shoreline intersect points for the western coast of North Carolina (NCwest), calculated using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the central coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) 2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Long and short-term shoreline change rate transects for the southern North Carolina coastal region (NCsouth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline intersect points for the southern coast of North Carolina (NCsouth), calculated using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the northern coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline intersect points for the northern coast of North Carolina (NCnorth), calculated using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Fear to the South Carolina border (NCwest) Long and short-term shoreline intersect points for the western coast of North Carolina (NCwest), calculated using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) Long and short-term shoreline intersect points for the northern coast of North Carolina (NCnorth), calculated using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the northern coast of North Carolina from the Virginia border to Cape Hatteras (NCnorth) 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the central coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) 2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Long and short-term shoreline intersect points for the southern coast of North Carolina (NCsouth), calculated using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline change rate transects for the southern North Carolina coastal region (NCsouth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) 2010 lidar-derived mean high water shoreline for the coast of South Carolina 2017-2018 lidar-derived mean high water shoreline for the coast of South Carolina Short-term shoreline change rate transects for the South Carolina coastal region using the Digital Shoreline Analysis System version 5.1 Intersects for the coastal region of South Carolina generated to calculate long-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 SC Bias Feature – Feature class containing South Carolina proxy-datum bias information to be used in the Digital Shoreline Analysis System Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1