Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:11427} (X) > partyWithName: Nathan J Wood (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

25 results (13ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release is comprised of a set of eight time travel map shapefiles (two tsunami inundation zones and four travel times) for use in GIS software applications and two population exposure by travel time tables (residents and nonresidences) for use in GIS software applications and other standalone spreadsheet applications. The travel time map was generated using the Pedestrian Evacuation Analyst model (version 1.0.1 for ArcGIS 10.5) from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction...
thumbnail
Distant tsunamis require short-notice evacuations in coastal communities to minimize threats to life safety. Given the available time to evacuate and potential distances out of hazard zones, coastal transportation planners and emergency managers can expect large proportions of populations to evacuate using vehicles. A community-wide, short-notice, distant-tsunami evacuation is challenging because it creates a sudden, significant, and concentrated demand on road-network systems. Transportation planners and emergency managers need methods to help them determine if a road network can handle an evacuation surge and if not, where interventions can best reduce overall clearance times. We use the coastal community of Bay...
thumbnail
Distant tsunamis require short-notice evacuations in coastal communities to minimize threats to life safety. Given the available time to evacuate and potential distances out of hazard zones, coastal transportation planners and emergency managers can expect large proportions of populations to evacuate using vehicles. A community-wide, short-notice, distant-tsunami evacuation is challenging because it creates a sudden, significant, and concentrated demand on road-network systems. Transportation planners and emergency managers need methods to help them determine if a road network can handle an evacuation surge and if not, where interventions can best reduce overall clearance times. We use the coastal community of Bay...
thumbnail
This dataset contains O'ahu resident count estimates as a function of travel time out of the standard and extreme tsunami-evacuation zones for three different travel speeds (impaired, slow, and fast walk). The data are organized in a manner which permits summarizing or visualizing the data by tsunami-evacuation zone and/or travel time, with communities listed across the top as columns and individual rows representing the number of residents present in the specific evacuation zone/travel time combination. Due to the nature of the methodology used to distribute residential population to structures, resident numbers are not integers. This dataset is intended for use in the U.S. Geological Survey's O'ahu, HI tsunami...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
Distant tsunamis require short-notice evacuations in coastal communities to minimize threats to life safety. Given the available time to evacuate and potential distances out of hazard zones, coastal transportation planners and emergency managers can expect large proportions of populations to evacuate using vehicles. A community-wide, short-notice, distant-tsunami evacuation is challenging because it creates a sudden, significant, and concentrated demand on road-network systems. Transportation planners and emergency managers need methods to help them determine if a road network can handle an evacuation surge and if not, where interventions can best reduce overall clearance times. We use the coastal community of Bay...
thumbnail
Distant tsunamis require short-notice evacuations in coastal communities to minimize threats to life safety. Given the available time to evacuate and potential distances out of hazard zones, coastal transportation planners and emergency managers can expect large proportions of populations to evacuate using vehicles. A community-wide, short-notice, distant-tsunami evacuation is challenging because it creates a sudden, significant, and concentrated demand on road-network systems. Transportation planners and emergency managers need methods to help them determine if a road network can handle an evacuation surge and if not, where interventions can best reduce overall clearance times. We use the coastal community of Bay...
thumbnail
This dataset contains O'ahu employee count estimates as a function of travel time out of the standard and extreme tsunami-evacuation zones for three different travel speeds (impaired, slow, and fast walk). The data are organized in a manner which permits summarizing or visualizing the data by business classification (community support, dependent-care, emergency service, infrastructure, public venue, and remaining businesses), at-risk population-serving facility type (adult assistance services, child services, correctional facilities, medical and health services, medical center, and schools), tsunami-evacuation zone, and/or travel speed, with business details and evacuation zone/travel speed combinations listed across...
thumbnail
Most methods for the assessment of sinkhole hazard susceptibility are predicated upon knowledge of pre-existing closed depressions in karst areas. In the United States (U.S.), inventories of existing karst depressions are piecemeal, and are often obtained through inconsistent methodologies applied at the state or county level and at various scales. Here, we present a first attempt at defining a karst closed depression inventory across the conterminous U.S. using a common methodology. Automated algorithms for extraction of closed depressions from 1/3 arc-second (approximately 10 m resolution) National Elevation Dataset (NED) were run on the U.S. Geological Survey (USGS) “Yeti” high-performance computing cluster....
The dataset contains hazard-exposure estimates of FY2020 Federal Real Property Profile (FRPP) data to 100-year and 500-year flood-hazard zones for the years 2022 and 2052. Flow depths for each of the four hazard zones were estimated for every FRPP record using geospatial analysis. Results include raw values for estimated flow depths in centimeters and bin values on a -1 to 5 scale. Flood-hazard zones were available for the conterminous United States, Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands. FRRP data records were limited to government-owned buildings and structures for all identified property uses, except for records identified as "navigation aids (other than buildings)."
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
An integral part of disaster risk management is identifying and prioritizing hazards and their potential impacts in a meaningful way to support risk-reduction planning. There has been considerable use and subsequent criticism of threat prioritization efforts that simply compare likelihoods and consequences of plausible threats. This data supports an article that summarizes a new mixed-methods and scalable approach for prioritizing risks in a multi-hazard, multi-objective, and multi-criteria organizational context. This data describes (1) hazard characterizations using subject-matter-expert (SME) elicitation, (2) expressed preferences in planning priorities provided by emergency managers, and (3) quantitative estimates...
thumbnail
This data release is comprised of a set of six time travel map shapefiles (two tsunami evacuation zones and three travel times) and three population exposure by travel time tables (residents, employees, and hotel visitors). The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
These datasets support the conclusions in the journal article entitled "Current and future sinkhole susceptibility in karst and pseudokarst areas of the conterminous United States" as described in the abstract below: Sinkholes in karst and pseudokarst regions threaten infrastructure, property, and lives. We mapped closed depressions in karst and pseudokarst regions of the conterminous United States (U.S.) from 10-meter-resolution elevation data using high-performance computing, and then created a heuristic additive model of sinkhole susceptibility that also included nationally consistent data for factors related to geology, soils, precipitation extremes, and development. Maps identify potential sinkhole hotspots...
thumbnail
These datasets support the conclusions in the journal article entitled "Modeling non-structural strategies to reduce pedestrian evacuation times for mitigating local tsunami threats in Guam" as described in the abstract below: Reducing the potential for loss of life from local tsunamis is challenging for emergency managers given the need for self-protective behavior within brief windows of time for at-risk individuals to evacuate. There has been considerable attention paid to discussing the construction of tsunami vertical-evacuation structures for areas where there is insufficient time to evacuate. This strategy may not be feasible for at-risk populations in island communities for multiple reasons. We examine the...
thumbnail
Distant tsunamis require short-notice evacuations in coastal communities to minimize threats to life safety. Given the available time to evacuate and potential distances out of hazard zones, coastal transportation planners and emergency managers can expect large proportions of populations to evacuate using vehicles. A community-wide, short-notice, distant-tsunami evacuation is challenging because it creates a sudden, significant, and concentrated demand on road-network systems. Transportation planners and emergency managers need methods to help them determine if a road network can handle an evacuation surge and if not, where interventions can best reduce overall clearance times. We use the coastal community of Bay...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS (https://geography.wr.usgs.gov/science/vulnerability/tools.html). The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped...
thumbnail
Most methods for the assessment of sinkhole hazard susceptibility are predicated upon knowledge of pre-existing closed depressions in karst areas. In the United States (U.S.), inventories of existing karst depressions are piecemeal, and are often obtained through inconsistent methodologies applied at the state or county level and at various scales. Here, we present a first attempt at defining a karst closed depression inventory across the conterminous U.S. using a common methodology. Automated algorithms for extraction of closed depressions from 1/3 arc-second (approximately 10 m resolution) National Elevation Dataset (NED) were run on the U.S. Geological Survey (USGS) “Yeti” high-performance computing cluster....


map background search result map search result map Pedestrian tsunami evacuation results for two tsunami-evacuation zones (standard and extreme) and three travel speeds (impaired, slow, and fast walk) for O'ahu, HI Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and impaired walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and fast walk speed Pedestrian evacuation times for residents on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian evacuation times for employees on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian tsunami evacuation results for two tsunami-inundation zones (2009 and probable maximum tsunami (PMT)) and four travel speeds (slow walk, fast walk, slow run, and fast run) for American Samoa Evacuation clearance time estimations of short-notice, distant-tsunami evacuations for demand mitigation scenarios. Bay Farm Island tsunami evacuation MATSIM network Vehicular Demand estimation for short-notice, distant-tsunami evacuation of Bay Farm Island, CA Closed depression density in karst regions of the conterminous United States: features and grid data Closed depression density in karst regions of the conterminous United States: features and grid data (COPY) Threat prioritization framework and input data for a multi-hazard risk analysis for the U.S. Department of the Interior Pedestrian evacuation time maps, flow depth time series, and population estimates for the island of Guam tsunami evacuation zone Geospatial files and tabular exposure estimates of sinkhole susceptibility for counties in the conterminous United States for current conditions and projections for the years 2070-2079 - Overview Vehicular Demand estimation for short-notice, distant-tsunami evacuation of Bay Farm Island, CA Bay Farm Island tsunami evacuation MATSIM network Evacuation clearance time estimations of short-notice, distant-tsunami evacuations for demand mitigation scenarios. Pedestrian evacuation time maps, flow depth time series, and population estimates for the island of Guam tsunami evacuation zone Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and slow walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and impaired walk speed Pedestrian tsunami evacuation results for two tsunami-evacuation zones (standard and extreme) and three travel speeds (impaired, slow, and fast walk) for O'ahu, HI Pedestrian evacuation times for residents on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Pedestrian evacuation times for employees on the island of O'ahu, Hawai'i, for standard and extreme tsunami evacuation zones by community, modeled at three travel speeds (impaired, slow, and fast walk) Tsunami evacuation time map for the island of O'ahu, Hawai'i, standard tsunami evacuation zone and fast walk speed Tsunami evacuation time map for the island of O'ahu, Hawai'i, extreme tsunami evacuation zone and fast walk speed Closed depression density in karst regions of the conterminous United States: features and grid data Closed depression density in karst regions of the conterminous United States: features and grid data (COPY) Geospatial files and tabular exposure estimates of sinkhole susceptibility for counties in the conterminous United States for current conditions and projections for the years 2070-2079 - Overview Threat prioritization framework and input data for a multi-hazard risk analysis for the U.S. Department of the Interior