Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:24015} (X) > Types: Map Service (X)

14 results (58ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Hawaiʹi’s most widespread native tree, ʹōhiʹa lehua (Metrosideros polymorpha), has been dying across large areas of Hawaiʹi Island mainly due to two fungal pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) that cause a disease collectively known as Rapid ʹŌhiʹa Death (ROD). Here we examine patterns of positive detections of C. lukuohia as it has been linked to the larger mortality events across Hawaiʹi Island. Our analysis compares the environmental range of C. lukuohia and its spread over time through the known climatic range and distribution of ʹōhiʹa. This data set is a georeferenced raster file, containing the projected potential presence of C.lukuohia across the main Hawaiian Islands using climatic...
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
thumbnail
This data set describes the predicted daily climate (temperature and rainfall) for low, mid, and high-elevations on Mona Loa, Island of Hawaii from 2098-2100. Climate predictions are based on 3 alternative climate scenarios (RCP 4.5, A1B, and RCP 8.5) - see Liao et al. 2015 for more details and climate references. The predicted daily risk of susceptible Hawaiian honeycreepers are based on the daily climate data, mosquito abundance and other factors. Also see Samuel et al. 2011 The dynamics, transmission, and population impacts of avian malaria in native Hawaiian birds: a modeling approach. Ecological Applications 21:2960-2973 for description of the epidemiological model used for avian malaria risk predictions.
thumbnail
This single raster dataset has five different bands, one band for each of the five Bioclim models computed, based on different subsets of the available CRB occurrence data including: 1) all available global data (excluding Hawaii); 2) only occurrences within CRB's native range; 3) only occurrences in the species non-native range (excluding Hawaii); 4) only occurrences in the species insular non-native range (excluding Hawaii).; and 5) only occurrences collected in Hawaii by the CRB response team. Detailed methods for each model are described in the associated xml metadata file.
thumbnail
We created a comprehensive estimate of potential distribution for a subset of 17 ecosystem modifying invasive plants (EMIPs) in Hawaiʻi. This work uses methods that integrate a wide set of data sources including agency and citizen science data, but perhaps more importantly, the integration of regional and global distribution information for these species. We developed transferable and comparable general species distribution models (SDMs) at global and regional scales based on a minimum set of biologically plausible predictors. We built three sets of ensemble species distribution models (SDMs) for each species. We first built global and regional ensemble distribution models for each species. Then, to create a comprehensive...
thumbnail
Hawaiʹi’s most widespread native tree, ʹōhiʹa lehua (Metrosideros polymorpha), has been dying across large areas of Hawaiʹi Island mainly due to two fungal pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) that cause a disease collectively known as Rapid ʹŌhiʹa Death (ROD). Here we examine patterns of positive detections of C. lukuohia as it has been linked to the larger mortality events across Hawaiʹi Island. Our analysis compares the environmental range of C. lukuohia and its spread over time through the known climatic range and distribution of ʹōhiʹa. This data set is a georeferenced raster file, containing the projected suitability for C.lukuohia across the main Hawaiian Islands using climatic variables...
thumbnail
Conservation efforts in isolated archipelagos such as Hawaii often focus on habitat-based conservation and restoration efforts that benefit multiple species. Unfortunately, identifying locations where such efforts are safer from climatic shifts is still challenging. We aimed to provide a method to approximate these potential habitat shifts for similar data- and research-limited contexts. We modeled the relationship between climate and the potential distribution of native biomes across the Hawaiian archipelago to provide a first approximation of potential native biome shifts under end-of-century projected climate. Our correlative model circumvents the lack of data necessary for the parameterization of mechanistic...
thumbnail
We created a comprehensive estimate of potential distribution for a subset of 17 ecosystem modifying invasive plants (EMIPs) in Hawaiʻi. This work uses methods that integrate a wide set of data sources including agency and citizen science data, but perhaps more importantly, the integration of regional and global distribution information for these species. We developed transferable and comparable general species distribution models (SDMs) at global and regional scales based on a minimum set of biologically plausible predictors. The global models were developed for each species using all global location data and pseudo-absences (PAs), excluding those found in Hawaiʻi, and using WorldClim2 bioclimatic variables (1...
thumbnail
2018 was a record-breaking year for wildfires in Hawai‘i with over 30,000 acres burned statewide, including the habitat of the Oʻahu chewstick, a critically endangered flowering plant with less than 50 individuals remaining. The frequency and severity of wildfire in Hawai‘i has been increasing, and this trend is predicted to worsen with climate change. Wildfires are promoted by highly flammable invasive plants, which can spread across the landscape, providing a widespread fuel source to feed large fires that are hard to control. However, different plant species vary in their flammability, so wildfire risk depends not only on climate, but also on which plants are present. A major concern is that new non-native plants...
thumbnail
This dataset comprises high-resolution geotif files representing various aspects of the ʻākohekohe (Palmeria dolei) potential habitat on the Island of Hawaiʻi. It includes a habitat suitability map showing average suitability scores, a map of homogenous forested areas (HFAs) depicting clusters with consistent suitability scores, and a map of pixel-wise standard deviation across habitat suitability models. These maps were generated through a comprehensive analysis using lidar-based metrics, offering detailed insights into the habitat preferences of ʻākohekohe.
thumbnail
Climate change in Hawaiʻi is expected to result in increasing temperatures and varying precipitation through the twenty-first century. Already, high elevation areas have experienced rapidly increasing temperatures and there has been an increase in the frequency of drought across the Islands. These climatic changes could have significant impacts on Hawaiʻi’s plants and animals. Changes in temperature and moisture may make current habitat no longer suitable for some species, and could allow invasive species to spread into new areas. Hawaiʻi Volcanoes National Park is home to 23 species of endangered vascular plants and 15 species of endangered trees. Understanding how climate change may impact the park’s plants...
thumbnail
We integrated recent climate model projections developed for the State of Hawai’i with current climatological datasets to generate updated regionally defined bioclimatic variables. We derived updated bioclimatic variables from new projections of baseline and future monthly minimum, mean, and maximum temperature (Tmin, Tmean, Tmax) and mean precipitation (Pmean) data at 250 m resolution. We used observation-based data for the baseline bioclimatic variables from the Rainfall Atlas of Hawai’i. We used the most up-to-date dynamically downscaled future projections based on the Weather Research and Forecasting (WRF) model from the International Pacific Research Center (IPRC) and the National Center for Atmospheric Research...
thumbnail
We created a comprehensive estimate of potential distribution for a subset of 17 ecosystem modifying invasive plants (EMIPs) in Hawaiʻi. This work uses methods that integrate a wide set of data sources including agency and citizen science data, but perhaps more importantly, the integration of regional and global distribution information for these species. We developed transferable and comparable general species distribution models (SDMs) at global and regional scales based on a minimum set of biologically plausible predictors. The regional models were developed for each species using only regional location data and pseudo-absences (PAs) wihtin the extent of the main Hawaiian Islands and regionally derived bioclimatic...
thumbnail
Hawaiʻi’s native forest birds are known worldwide for their diversity and beauty. Unfortunately, many species are heading towards extinction because of bird malaria spread by mosquitoes introduced over a century ago. Remaining populations of these highly threatened forest birds tend to be at high elevations near the tree line on mountains, where cooler temperatures limit mosquitoes and malaria development. With rising temperatures in those upslope areas due to climate change, mosquitoes and disease are starting to be found at higher elevations. In addition to warming temperatures, increasingly dry conditions change stream flow allowing for the creation of pools that provide additional larval mosquito habitat in...


    map background search result map search result map Assessing the Potential Effects of Climate Change on Vegetation in Hawaiʻi Volcanoes National Park Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Identifying opportunities for long-lasting habitat conservation and restoration in Hawaii’s shifting climate Modeled potential presence of Ceratocystis luhuohia across Hawaiian Islands Hawaiian Islands Ceratocystis luhuohia modeled habitat suitability Predicting the Effects of Climate Change on the Spread of Fire-Promoting Plants in Hawai‘i: Assessing Emerging Threats to Rare Native Plants and Ecosystems Predicting and Mitigating the Threat of Avian Disease to Forest Birds at Hakalau Forest National Wildlife Refuge Hawaiian Islands 19 bioclimatic variables for baseline and future (RCP 4.5 and RCP 8.5) climate scenarios CRB climate compatibility maps based on global and local species occurrences Island of Hawaiʻi lidar-based habitat suitability for ʻākohekohe (Palmeria dolei) conservation introductions, 2023 Hawaiian Islands global habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Hawaiian Islands regional habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Hawaiian Islands nested habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Assessing the Potential Effects of Climate Change on Vegetation in Hawaiʻi Volcanoes National Park Island of Hawaiʻi lidar-based habitat suitability for ʻākohekohe (Palmeria dolei) conservation introductions, 2023 Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Predicting and Mitigating the Threat of Avian Disease to Forest Birds at Hakalau Forest National Wildlife Refuge Hawaiian Islands 19 bioclimatic variables for baseline and future (RCP 4.5 and RCP 8.5) climate scenarios Hawaiian Islands global habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Hawaiian Islands regional habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Hawaiian Islands nested habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Predicting the Effects of Climate Change on the Spread of Fire-Promoting Plants in Hawai‘i: Assessing Emerging Threats to Rare Native Plants and Ecosystems Modeled potential presence of Ceratocystis luhuohia across Hawaiian Islands Hawaiian Islands Ceratocystis luhuohia modeled habitat suitability CRB climate compatibility maps based on global and local species occurrences Identifying opportunities for long-lasting habitat conservation and restoration in Hawaii’s shifting climate