Skip to main content
Advanced Search

Filters: Contacts: Dominique Bachelet (X) > partyWithName: Tim Sheehan (X)

9 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from PLoS ONE): To develop effective long-term strategies, natural resource managers need to account for the projected effects of climate change as well as the uncertainty inherent in those projections. Vegetation models are one important source of projected climate effects. We explore results and associated uncertainties from the MC2 Dynamic Global Vegetation Model for the Pacific Northwest west of the Cascade crest. We compare model results for vegetation cover and carbon dynamics over the period 1895–2100 assuming: 1) unlimited wildfire ignitions versus stochastic ignitions, 2) no fire, and 3) a moderate CO2 fertilization effect versus no CO2fertilization effect. Carbon stocks decline in all scenarios,...
Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a) managers are searching for weather and climate...
Dynamic global vegetation model (DGVM) projections are often put forth to aid resource managers in climate change-related decision making. However, interpreting model results and understanding their uncertainty can be difficult. Sources of uncertainty include embedded assumptions about atmospheric CO2 levels, uncertain climate projections driving DGVMs, and DGVM algorithm selection. For western Oregon and Washington, we implemented an Environmental Evaluation Modeling System (EEMS) decision support model using MC2 DGVM results to characterize biomass loss risk. MC2 results were driven by climate projections from 20 General Circulation Models (GCMs) and Earth System Models (ESMs), under Representative Concentration...
Categories: Publication; Types: Citation
Conservation Biology Institute (CBI) has been developing web applications to centralize and serve credible and usable information that allows natural resource managers, as well as the general public, to better understand the challenges posed by on-going environmental change. In particular CBI has designed a series of climate consoles that provide natural resource managers the most recent 5th Climate Model Intercomparison Program (CMIP5) climate projections, landscape intactness, and soil sensitivity for a series of reporting units over the western United States. The publically available web sites were refined based on feedback from a variety of users. In this paper, we describe each of the tools developed as open-source...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0304380015003865): Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three subregions: the Western Northwest (WNW),...
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
thumbnail
In the Pacific Northwest, temperatures are projected to increase 2-15°F by 2100. Winters are expected to become wetter and summers could become drier. Snowpack will likely decrease substantially, and snowmelt runoff may occur earlier in the year. Wildfires are projected to become more frequent and severe, and forest types are expected to change from maritime evergreen to subtropical mixed-woodlands. Because the impacts of climate change vary from place to place, regionally-specific climate projections are critical to help farmers, foresters, city planners, public utility providers, and fish and wildlife managers plan for how to best manage resources. However, the models that are used to project changes in climate...
thumbnail
FY2015Researchers conducted interviews with sagebrush land managers from Oregon, Idaho and Utah to identify the most relevant variables, threats and management strategies relevant to their specific sagebrush management areas. Managers were also asked to assess a series of web-based climate tools, providing feedback about what features of the tools were most intuitive, interesting and useful, or complicated, unnecessary, and in need of revision. Results from the first phase of the project suggested several directions to improve existing climate tools.
Abstract (from http://www.sciencedirect.com/science/article/pii/S0140196315300677): Climate change has already affected southern California where regional increases in temperature and vegetation shifts have been observed. While all the CMIP5 temperature projections agree on a substantial level of warming throughout the year, there is fair bit of divergence in the magnitude and seasonality of projected changes in rainfall. While desert plants and animals are generally adapted to extreme conditions, some species may be approaching their physiological threshold. We calculated the climate velocity of both temperature and aridity (PPT/PET) in SE California to illustrate the spatial variability of climate projections...


    map background search result map search result map Projecting Future Climate, Vegetation, and Hydrology in the Pacific Northwest Developing Usable Climate Tools for Land Managers Developing Usable Climate Tools for Land Managers Projecting Future Climate, Vegetation, and Hydrology in the Pacific Northwest