Skip to main content
Advanced Search

Filters: Contacts: U.S. Geological Survey, Earthquake Hazards Program (X) > Categories: Data (X)

32 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
This dataset presents where, why, and how much probabilistic ground motions have changed with the 2018 update of the National Seismic Hazard Model (NSHM) for the conterminous U.S. (CONUS) vs. the 2014 NSHM. In the central and eastern U.S., hazard changes are the result of updated ground motion models (further broken down by median and epistemic uncertainty, aleatory variability, and site effects models) and gridded seismicity models. In the western U.S., hazard changes are the result of updated ground motion models in four urban areas with deep sedimentary basins and gridded seismicity models. Probabilistic ground motion changes (2% in 50 years probability of exceedance for a firm rock site, VS30 = 760 m/s, NEHRP...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
EXPO-CAT is a catalog of human exposure to discrete levels of shaking intensity, obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. EXPO-CAT is derived from two key datasets: the PAGER-CAT earthquake catalog and the Atlas of ShakeMaps. PAGER-CAT provides accurate earthquake source information necessary to compute reliable ShakeMaps in the Atlas. It also contributes loss information (i.e., number of deaths and injuries) from historical events. Using historical earthquakes in the Atlas and...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
We present a petrologic and mineral physics database as part of the USGS National Crustal Model (NCM) for the western United States. Each of 209 geologic units, 134 of which are currently part of the geologic framework within the NCM, is assigned a mineralogical composition according to generalized classifications with some refinement for specific geologic formations. The mineral physics database builds off of previous work to include several minerals specific to continental rock types. We explore the impact of this database on zero-porosity anharmonic P- and S-wave rock velocities and density relative to a well-used empirical study by Brocher (2005) and find that empirical relations between P-wave velocity and...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.


map background search result map search result map Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cascadia Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, New Guinea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Petrologic and Mineral Physics Database for use with the USGS National Crustal Model - Data Release Data Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cascadia Region Slab2 - A Comprehensive Subduction Zone Geometry Model, New Guinea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Data Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Petrologic and Mineral Physics Database for use with the USGS National Crustal Model - Data Release Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region