Skip to main content
Advanced Search

Filters: Contacts: U.S. Geological Survey, Geologic Hazards Science Center (X)

66 results (54ms)   

View Results as: JSON ATOM CSV
thumbnail
EXPO-CAT is a catalog of human exposure to discrete levels of shaking intensity, obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. EXPO-CAT is derived from two key datasets: the PAGER-CAT earthquake catalog and the Atlas of ShakeMaps. PAGER-CAT provides accurate earthquake source information necessary to compute reliable ShakeMaps in the Atlas. It also contributes loss information (i.e., number of deaths and injuries) from historical events. Using historical earthquakes in the Atlas and...
thumbnail
This data release includes time-series data from two monitoring stations in drainage basins burned in the 2009 Station Fire, Los Angeles County, California. Both stations are located near the upper boundary of their respective watershed and were installed to study the effects of vegetation recovery on hillslope hydrology and debris-flow occurrence. The coordinates of the Arroyo Seco site are 34°14'13.10"N, 118°11'44.72"W. The coordinates for the Dunsmore Canyon hillslope site are 34°15'54.27"N, 118°14'14.41"W. The data include 1-minute time series of rainfall, soil water content, soil temperature, and soil matric potential recorded at two locations at both stations: AS1, AS2, DC1, DC2. The two locations at each...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
The U.S. Geological Survey National Crustal Model (NCM) is being developed to include spatially varying estimates of site response in seismic hazard assessments. Primary outputs of the NCM are continuous velocity and density profiles from the Earth’s surface to the mantle transition zone at 410 km depth for each location on a 1-kilometer grid across the conterminous United States. Datasets used to produce the NCM may have a resolution of better than 1 km near the Earth’s surface in some regions, but, with increasing depth, NCM resolution decreases to 10’s to 100’s of km in the mantle. Basic subsurface information is provided by the NCM geologic framework (NCMGF), thermal model, and petrologic and mineral physics...
thumbnail
The USGS Geologic Hazards Science Center (GHSC) in Golden, CO maintains a GIS server with services pertaining to various geologic hazard disciplines involving earthquakes and landslides. The online link provides an overview of the structure of this server and also outlines the GIS data it contains. The folders named eq (earthquakes), haz (earthquake hazards), and ls (landlsides) contain services with data associated with each discipline.
thumbnail
The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit, Turkey. For each event, 1D synthetic earthquake ground motion time histories are provided, based on four different methodologies: 1) Frankel, A. (2009). A constant stress-drop model for producing broadband synthetic seismograms: comparison with the next generation attenuation relations, Bull. Seism. Soc. Am. V.99, 664-680. 2) Hartzell, S., M. Guatteri, P. Martin Mai, P. Liu, and M. Fisk (2005). Calculation of broadband time histories of ground motion, part II: kinematic and dynamic modeling using theoretical Green’s functions and comparison with the 1994...
This data release includes time-series, qualitative descriptions, and laboratory testing data from two monitoring stations installed in Puerto Rico following Hurricane Maria in 2017, which led to tens of thousands of landslides across the island (Bessette-Kirton et al., 2017). The stations were installed in July of 2018 to investigate subsurface hydrologic response to rainfall and develop a quantitative link between rainfall and landsliding. The Toro Negro site is located within the state protected Toro Negro rainforest near 18°10’N, 66°34’W and the Utuado site is located outside the city of Utuado near 18°17’N, 66°39’W. The soil found at the Toro Negro site is low-permeability, fine-grained and cohesive, and underlain...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
A Finite Fault is a modeled representation of the spatial extent, amplitude and duration of fault rupture (slip) of an earthquake, and is generated via the inversion of teleseismic body waveforms and long period surface waves. It may indicate that a location of major fault-slip and source of seismic energy has occurred at a significant distance from the earthquake epicenter, which is the location on the fault where the earthquake rupture nucleated. For many earthquakes, the preferred model represents the distribution of slip on one of the two alternative fault-planes that are implied by the earthquake moment-tensor. For some earthquakes, the seismographic data are fit equally well by models involving slip on either...
thumbnail
The DYFI system collects observations from people who felt an earthquake and then maps out the extent of shaking and damage they reported. The ComCat online Search interface allows users to select query criteria that return events with DYFI data and products.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
This dataset consists of over 800 field observations of ground failure (landslides, lateral spreading, and liquefaction) and other damage triggered by the 2019-2020 Puerto Rico earthquake sequence. The sequence started with a M4.7 earthquake on 28 December 2019, followed by many more earthquakes, including 15 larger than M5 (as of 7 July 2020). The M6.4 mainshock, which is thought to have triggered much of the observed ground failure, occurred on 7 January 2020. Most field reconnaissance efforts documented here took place as soon as possible after the mainshock, from 12-18 January 2020, to attempt to capture ephemeral data before evidence was destroyed by natural forces or repairs, but observations continued to...
thumbnail
We present a petrologic and mineral physics database as part of the USGS National Crustal Model (NCM) for the western United States. Each of 209 geologic units, 134 of which are currently part of the geologic framework within the NCM, is assigned a mineralogical composition according to generalized classifications with some refinement for specific geologic formations. The mineral physics database builds off of previous work to include several minerals specific to continental rock types. We explore the impact of this database on zero-porosity anharmonic P- and S-wave rock velocities and density relative to a well-used empirical study by Brocher (2005) and find that empirical relations between P-wave velocity and...


map background search result map search result map Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Hillslope hydrologic monitoring data following the 2009 Station Fire, Los Angeles County, California, November 2015 to June 2017 Petrologic and Mineral Physics Database for use with the USGS National Crustal Model - Data Release Calibration Coefficients for the U.S. Geological Survey National Crustal Model and Depth to Water Table Field observations of ground failure triggered by the 2020 Puerto Rico earthquake sequence Hillslope hydrologic monitoring data following the 2009 Station Fire, Los Angeles County, California, November 2015 to June 2017 Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Vanuatu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Himalaya Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Calibration Coefficients for the U.S. Geological Survey National Crustal Model and Depth to Water Table Petrologic and Mineral Physics Database for use with the USGS National Crustal Model - Data Release