Skip to main content
Advanced Search

Filters: partyWithName: John Y Takekawa (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southwest CASC ( Show direct descendants )

6 results (11ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Southwest CASC
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (6912 points, collected across public and private land in 2018), Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (June 2018), a 1 m lidar DEM from September 2018, and a 1 m canopy surface model were used to generate models of predicted bias across the...
thumbnail
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats. To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Bolinas Lagoon, CA, CASC, California, All tags...
thumbnail
Decomposition of plant matter is one of the key processes affecting carbon cycling and storage in tidal wetlands. In this study, we evaluated the effects of factors related to climate change (temperature, inundation) and vegetation composition on rates of litter decay in seven tidal marsh sites along the Pacific coast. In 2014 we conducted manipulative experiments to test inundation effects on litter decay at Siletz Bay, OR and Petaluma marsh, CA. In 2015 we studied decay of litter in high and low elevation marshes at seven Pacific coast sites. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R., Thorne, K.M., Dugger, B.D. and Takekawa, J.Y., 2017. Inundation, vegetation,...
Abstract (from SpringerLink): Salt marsh-dependent species are vulnerable to impacts of sea-level rise (SLR). Site-specific differences in ecogeomorphic processes result in different SLR vulnerabilities. SLR impacts to Ridgway’s rail (Rallus obsoletus) of Southern California (SC) and San Francisco Bay (SF), U.S.A. could foreshadow SLR effects on other coastal endemic species. Salt marsh vulnerabilities to SLR were forecasted across 14 study sites using the Wetland Accretion Rate Model of Ecosystem Resilience, which accounts for changes in above and belowground marsh processes. Changes in suitable habitat for rail were projected with MaxEnt. Under a high (166 cm/100 yr) SLR scenario, current extent of suitable habitat...
Categories: Publication; Types: Citation


    map background search result map search result map Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015 LEAN-Corrected DEM for Suisun Marsh LEAN-Corrected DEM for Suisun Marsh Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015