Skip to main content
Advanced Search

Filters: partyWithName: Kathryn M Weber (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X)

Folders: ROOT > ScienceBase Catalog > USGS Data Release Products ( Show all descendants )

11 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline was added to enable the calculation of long- and short-term shoreline change rates. In 2013, the U.S. Geological Survey (USGS), in cooperation with CZM, delineated an additional oceanfront shoreline using 2007...
thumbnail
This data release contains foreshore slopes for primarily open-ocean sandy beaches along the East Coast of the United States (Maine through Florida). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 1997 and 2018. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined, and then 20-meter equally-spaced cross-shore beach transects were created perependicular to the baseline. All data points within 1-meter (along-shore) of each transect were associated with that transect. For each transect, the points on the foreshore were identified, and a linear regression was fit through the foreshore points. Beach...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management compiled Massachusetts vector shorelines into an updated dataset for the Office’s Shoreline Change Project. The Shoreline Change Project started in 1989 to identify erosion-prone areas of the Massachusetts coast by compiling a database of historical shoreline positions. Trends of shoreline position over long- and short-term timescales provide information to landowners, managers, and potential buyers about possible future changes to costal resources and infrastructure. This updated dataset strengthens the understanding of shoreline position change in Massachusetts. It includes U.S. Geological Survey vector shorelines...
thumbnail
This data release contains mean high water (MHW) shorelines for the Outer Cape of Cape Cod, Massachusetts, from Nauset Inlet to Race Point. From 1998-2005, the U.S. Geological Survey surveyed 45 kilometers of coastline 111 times using a ground-based system called Surveying Wide-Area Shorelines (SWASH). The SWASH system used a six-wheeled amphibious all-terrain vehicle as a platform for an array of Global Positioning System sensors. High-accuracy measurements of horizontal position, vertical position, and beach slope were collected at 0.5-second intervals as the vehicle traversed a single, shore-parallel line along the foreshore. The data were interpolated onto a coast-following reference line at 2-meter intervals....
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This data release contains foreshore slopes for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined and then evenly-spaced cross-shore beach transects were created. Then all data points within 1 meter of each transect were associated with each transect. Next, it was determined which points were one the foreshore, and then a linear regression was fit through the foreshore points. Beach slope was defined as the slope of...


    map background search result map search result map Dune Metrics for the Massachusetts Coast as Derived From 2013–14 Topographic Lidar Data Massachusetts Shoreline Change Project: A GIS Compilation of Vector Shorelines for the 2018 update Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts Barrier island geomorphology and shorebird habitat metrics: Four sites in New York, New Jersey, and Virginia, 2010–2014 Barrier island geomorphology and shorebird habitat metrics: Sixteen sites on the U.S. Atlantic Coast, 2013–2014 Mean High Water Shorelines for the Outer Cape of Massachusetts from Nauset Inlet to Race Point (1998-2005) USGS National Shoreline Change - A GIS compilation of new lidar-derived shorelines (2010, 2017, and 2018) and associated shoreline change data for coastal South Carolina Beach foreshore slope for the West Coast of the United States Beach foreshore slope for the East Coast of the United States Mean High Water Shorelines for the Outer Cape of Massachusetts from Nauset Inlet to Race Point (1998-2005) Massachusetts Shoreline Change Project: A GIS Compilation of Vector Shorelines for the 2018 update Dune Metrics for the Massachusetts Coast as Derived From 2013–14 Topographic Lidar Data Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts USGS National Shoreline Change - A GIS compilation of new lidar-derived shorelines (2010, 2017, and 2018) and associated shoreline change data for coastal South Carolina Barrier island geomorphology and shorebird habitat metrics: Four sites in New York, New Jersey, and Virginia, 2010–2014 Barrier island geomorphology and shorebird habitat metrics: Sixteen sites on the U.S. Atlantic Coast, 2013–2014 Beach foreshore slope for the West Coast of the United States Beach foreshore slope for the East Coast of the United States