Skip to main content
Advanced Search

Filters: partyWithName: Camille L Stagg (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > South Central CASC ( Show direct descendants )

13 results (18ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___South Central CASC
View Results as: JSON ATOM CSV
Abstract (from Springer): Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types, Sporobolus alterniflorus (= Spartina alterniflora) and Sporobolus pumilus (= Spartina patens), using 24-h laboratory incubation...
Categories: Publication; Types: Citation
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
Stress gradients influence many ecosystem processes and properties, including ecosystem recovery from and resistance to disturbance. While recent analytical approaches have advanced multivariate metrics of ecosystem resilience that allow quantification of conceptual resilience models and identification of thresholds of state change, these approaches are not often translated to landscape scales. Using natural and restored salt marshes in Louisiana, USA, we quantified plant community recovery and resistance metrics along flooding stress gradients. n‐dimensional hypervolumes of plant community biomass and structure were simulated using field data collected from disturbance‐recovery experiments. The relationships between...
Categories: Publication; Types: Citation
thumbnail
Short-term carbon accumulation rates were examined by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient in coastal Louisiana. Percent moisture, bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation and storage rates.
thumbnail
This dataset provides the water content, bulk density, carbon concentrations, nitrogen concentrations, and carbon content of all fourteen cores sampled in coastal Louisiana (CRMS 0224) in October of 2019. Each sample is identified by a unique identifier that corresponds to each site by depth increment combination. The pond age range associated with each site is provided. The depth increment associated with each sample is provided.
thumbnail
Continuous water quality sensor data were collected at USGS 292939089544400 Wilkinson Bayou cutoff north of Wilkinson Bay, LA gage. Field water-quality measurements were collected using a YSI EXO2 water-quality sonde equipped with a data logger to capture hourly data using sensors for measuring water temperature, specific conductance, salinity, pH, oxidation and reduction potential (ORP), fluorescent dissolved organic matter (fDOM), and turbidity. The monitor was housed in an 8-inch diameter polyvinyl chloride (PVC) pipe attached to a temporary wooden structure near the gage. Measurements were collected from a fixed mid-depth point in the water column. All data were collected using U.S. Geological Survey (USGS)...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
Coastal wetlands provide numerous ecosystem services; yet these ecosystems are increasingly vulnerable to climate change stressors, especially excessive flooding from sea-level rise and storm events. This study highlights the important contribution of vegetation belowground biomass to marsh stability and identifies loss of vegetation as a critical driver of marsh collapse. We investigated the shear strength of salt marshes and unvegetated interior ponds using a modified cone penetrometer along a chronosequence of wetland marsh collapse (0 to 21 + years following pond formation) to characterize changes in the structural integrity of the marsh soil. Following conversion from vegetated marsh to open water pond, the...
Categories: Publication; Types: Citation
The northern Gulf of Mexico coast spans a dramatic water availability gradient (precipitation range: 700 to 1800 mm/year) and represents an excellent natural laboratory for developing climate-influenced ecological models for natural resource managers and culture keepers. In this project, we used this zone of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective...
Wetland Carbon and Environmental Management Wetlands are vital natural assets, including their ability to take-up atmospheric carbon and restrict subsequent carbon loss to facilitate long-term storage. They can be deliberately managed to provide a natural solution to mitigate climate change, as well as to help offset direct losses of wetlands from various land-use changes and natural drivers. Wetland Carbon and Environmental Management presents a collection of wetland research studies from around the world to demonstrate how environmental management can improve carbon sequestration while enhancing wetland health and function.
Categories: Publication; Types: Citation
Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This...
Categories: Publication; Types: Citation


    map background search result map search result map U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Soil Data (2013-2014) Short term soil carbon data and accretion rates from four marsh types in Mississippi River Delta collected in 2015 Cone penetrometer and elevation measurement data of coastal wetland plant states for resilience quantification, Louisiana, USA (2019) Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019 High resolution water quality and dissolved carbon data from a coastal Louisiana salt marsh from 2019 to 2022 High resolution water quality and dissolved carbon data from a coastal Louisiana salt marsh from 2019 to 2022 Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019 Cone penetrometer and elevation measurement data of coastal wetland plant states for resilience quantification, Louisiana, USA (2019) Short term soil carbon data and accretion rates from four marsh types in Mississippi River Delta collected in 2015 U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Soil Data (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014)