Skip to main content
Advanced Search

Filters: partyWithName: New York Water Science Center (X)

13 results (10ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Problem The ground-water flow system underlying the Manhasset Neck Peninsula, which provides potable water to the local population, consists of a complex assemblage of Pleistocene- and Cretaceous-age sediments that form five aquifers and at least two confining units. Recent hydrogeologic mapping in Manhasset Neck indicates significant glacial erosion of the Magothy aquifer, Raritan Clay, and Lloyd aquifer, and several gaps in the confining units that overlie the North Shore and Lloyd aquifers. Five areas of salt-water intrusion have been delineated, two of which are considered active. Several public-supply wells on the Manhasset Neck Peninsula have been shut down in the past as a result of saltwater intrusion....
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Complete, Completed, Cooperative Water Program, GW Model, GW Model, All tags...
thumbnail
Lake Ontario is the easternmost Great Lake and has a direct drainage area of 24,720 square miles (mi2)(excluding the Niagara River and upper Great Lakes watershed), and is bounded by the Canadian Province of Ontario to the north and west and New York State to the south and east. Lake Ontario receives its primary inflow from the watersheds of the upper Great Lakes through the Niagara River near Youngstown, New York, a drainage area of 263,700 mi2. The U.S. Environmental Protection Agency (EPA) is administering a program called the Great Lakes Restoration Initiative (GLRI), which was launched in 2010 to accelerate efforts to protect and restore the health of all the Great Lakes USEPA GLRI Action Plan I & II, (Great...
thumbnail
Problem - The valley-fill deposits in Upper Buttermilk Creek/Danby Creek valleys are sources of water for many homeowners, farms, and small businesses that are in this valley. The aquifer was mapped by Miller (2000) and identified as one of the 17 aquifers in Tompkins County that needs to be studied in more detail. However, there is little geohydrologic data in the valley. A cluster of wells in Upper Buttermilk valley are finished in sand and gravel, indicating that there is a sand and gravel aquifer in, at least, part of the valley. The Upper Buttermilk Creek/Danby Creek valleys are "through valleys"-- a part of a valley where the bedrock floor rose to land surface and formed a preglacial surface-water divide....
thumbnail
Problem Previous hydrologic studies have indicated that there may be sufficient water resources underlying Queens, Kings, Richmond, New York, and Bronx Counties for use as a supplemental water supply in times of drought or other emergency. An extensive ground-water and surface-water monitoring program is necessary to provide a comprehensive hydrologic data set for use in ongoing and future ground-water investigations. Objective The project will provide a continuous hydrologic data set needed for resource assessment, planning, and protection. To meet this objective the U.S. Geological Survey (USGS), in cooperation with the New York City Department of Environmental Protection, maintains and operates a network of approximately...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Climate Impacts, Climate Impacts, Climate impacts, Contaminants, Emerging, Contaminants, Emerging, All tags...
thumbnail
Problem Long Island’s sole-source aquifer system, which includes the Lloyd, Magothy, Jameco, and upper glacial aquifers, supplies groundwater to over 2.8 million people. As a coastal aquifer system, it is susceptible to saltwater intrusion. Past pumpage and sewering (fig. 1) resulted in increased salinity in most aquifers in all counties (Buxton and Shernoff, 1999; Misut and others, 2004; Misut and Aphale, 2014). Simulation of drought has predicted increasing salinity in the lower part of the glacial aquifer of the North Fork of Suffolk County (Misut and others, 2004). In addition, simulation of future well pumpage in Queens County by the U.S. Geological Survey (USGS) has predicted increasing salinity in the Magothy...
thumbnail
PROBLEM The valley‐fill aquifer in the lower Fall Creek valley (designated as aquifer 4, fig. 1), within the Towns of Dryden and Groton, was mapped by Miller (2000) and identified as one of 17 unconsolidated aquifers in Tompkins County that need to be studied in more detail. The east end of the valley (near the Tompkins and Cortland County border) is on the backside of a large morainal plug, which is part of the Valley Heads Moraine. A large system of springs discharge from the backside of the moraine and forms part of the headwaters to Fall Creek. The valley‐fill aquifer thins and pinches out to the west (figs. 1 and 2)— where the valley is floored by bedrock and becomes a “hanging valley” to Cayuga Lake trough....
thumbnail
BACKGROUND Air emissions from the combustion of fossil fuels in electrical power plants, building heating systems and vehicles are the major source of gaseous sulfur (SOx) and nitrogen (NOx) oxides in the atmosphere. These oxides dissolve in atmospheric moisture forming ions which are deposited by rain, snowfall and dust particles as acidic deposition. Acidic deposition releases soluble aluminum from the soil which can reach toxic concentrations in adjacent water bodies such as streams and wetlands. Acidic deposition also removes important nutrients such as calcium, potassium and magnesium from the soil negatively impacting local flora and fauna. Depletion of calcium combined with excess aluminum makes forest...
thumbnail
This document provides a summary of surface water-quality, streamflow, and groundwater data collected by the U.S. Geological Survey (USGS) within the Central Pine Barrens (CPB) Region of Suffolk County, New York. The data were collected in cooperation with the Central Pine Barrens Commission and the Town of Brookhaven under a five-year comprehensive water resources monitoring program. The surface water-quality data within the CPB for the 2018 water year (October 1, 2017 to September 30, 2018) includes data from the Carmans River and the Peconic River. The streams were sampled several times throughout the year at seven pre-determined locations. The Carmans River was sampled at five locations: 1) CARMANS RIVER AT...
thumbnail
Problem Previous hydrologic studies have indicated that there may be sufficient water resources underlying Richmond, New York, and Bronx Counties for use as a supplemental water supply by the New York City Department of Environmental Protection (NYCDEP) in times of a drought or other water shortage. Unfortunately, comprehensive data on the quantity and quality of the Counties' water resources are not available to make an accurate assessment. In order to evaluate the availability and suitability of these resources, representative and timely data on the ground-water and surface-water resources of these three Counties are needed. Objectives The primary objective is to develop, operate, and maintain long-term monitoring...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bronx County, Completed, Cooperative Water Program, GW or SW, GW or SW, All tags...
thumbnail
Background With few exceptions, the contemporary and past effects of acidification on fish populations and communities in streams across acid-sensitive regions of NY have not been documented. The pervasive lack of information only permits anecdotal insight into the spatial effects of acidification on stream-fish assemblages and essentially precludes any broad effort to quantify temporal trends and potential recovery of fish assemblages in less acidic or less toxic streams. Though the effects of acidification on fish assemblages have been qualified in several streams of the eastern Adirondacks during 1979, the 1980s, and early 2000s, (Schofield and Driscoll 1987; Simonin et al. 2005) quantitative impacts were...
thumbnail
Background Streams and rivers are an important environmental resource and provide water for many human needs. Streamflow is a measure of the volume of water carried by rivers and streams. Changes in streamflow can directly influence the supply of water available for human consumption, irrigation, generating electricity, and other needs. In addition, many plants and animals depend on streamflow for habitat and survival. Streamflow naturally varies over the course of a year. For example, rivers and streams in many parts of the country have their highest (peak) flow when snow melts in the spring. The amount of streamflow is important because high flows can cause erosion and damaging floods, while very low flows...
thumbnail
INTRODUCTION • Concerns over the viability of the fractured bedrock aquifer that provides about 1/3 of Rockland County’s water supply prompted a 5-year study by the U.S. Geological Survey (USGS) to (1) define the hydrogeologic framework of the aquifer, (2) assess conditions within it, and (3) identify other potential sources of water for the County. The study was done in cooperation with Rockland County and the New York State Department of Environmental Conservation. • Population growth in Rockland County to nearly 300,000 people has been paralleled by significant hydrologic changes over the past 50 years –water demand and impervious surface area have increased, and sanitary sewers now serve most areas and discharge...
thumbnail
Problem The Peconic Estuary of eastern Long Island, New York, is undergoing development as the region transitions from a rural area dependent on agriculture and tourism to a suburban one with a larger year-round population. The glacial and coastal-plain sediments underlying Long Island comprise a sole-source aquifer system that supplies the region’s communities with potable water. The area surrounding the Peconic Estuary was intensely farmed prior to suburbanization. Nitrogen loading from past fertilizer use was high as estimated from historical information and the continued detection of legacy effects in the aquifer system. In some areas, the peak or bolus of agricultural nitrogen loading from practices several...


    map background search result map search result map Development and Operation of Groundwater, Surface-Water, and Water-Quality Monitoring Networks in Richmond, New York, and Bronx Counties, New York Hydrologic-Data Collection in the Five Boroughs of New York City Assessing Spatiotemporal Patterns in Fish Assemblages from Acid-Sensitive Streams in the Adirondack and Catskill Mountains Water Quality Data for Tributaries to Lake Ontario in New York-- Great Lakes Restoration Initiative, Lakewide Impairment Study Effects of acid rain on the ecological health of Long Island’s forests and ponds Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Hydrologic Climate Change Indicators Geohydrology of the Valley-Fill Aquifer in Upper Buttermilk Creek/Danby Creek Valleys, Town of Danby, Tompkins County, New York Rockland County Water-Resource Assessment Delineation of the Hydrogeologic Framework and Saltwater-Freshwater Interface and Determination of Water-Supply Sustainability of Long Island, New York The Use of Solute-transport Methods to Estimate Time-varying Nitrogen Loading Rates to the Peconic Estuary Resulting from Wastewater and Fertilizer Inputs to Groundwater in Suffolk County, New York (Peconic Solute Transport) 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Geohydrology of the Valley-Fill Aquifer in Upper Buttermilk Creek/Danby Creek Valleys, Town of Danby, Tompkins County, New York Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York Development and Operation of Groundwater, Surface-Water, and Water-Quality Monitoring Networks in Richmond, New York, and Bronx Counties, New York 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Hydrologic-Data Collection in the Five Boroughs of New York City Effects of acid rain on the ecological health of Long Island’s forests and ponds The Use of Solute-transport Methods to Estimate Time-varying Nitrogen Loading Rates to the Peconic Estuary Resulting from Wastewater and Fertilizer Inputs to Groundwater in Suffolk County, New York (Peconic Solute Transport) Delineation of the Hydrogeologic Framework and Saltwater-Freshwater Interface and Determination of Water-Supply Sustainability of Long Island, New York Assessing Spatiotemporal Patterns in Fish Assemblages from Acid-Sensitive Streams in the Adirondack and Catskill Mountains Water Quality Data for Tributaries to Lake Ontario in New York-- Great Lakes Restoration Initiative, Lakewide Impairment Study Hydrologic Climate Change Indicators