Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey (X) > Extensions: Shapefile (X) > Types: Shapefile (X) > Types: Downloadable (X) > Types: OGC WFS Layer (X)

1,081 results (20ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Irrigation Non-Expansion Area Groundwater Basin in Arizona. Crops were verified in situ twice in 2023, first on May 10th and again on Sep 14th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2023 imagery for Arizona and supplemented with the Sentinel2 imagery collection accessed via the European Space Agency, Copernicus Browser (https://browser.dataspace.copernicus.eu/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
Observations of irrigated agricultural land within the Butler Valley Groundwater Basin in Arizona. Digitized field boundaries were used to locate crops for in situ verification twice in 2023; crop verification occurred first on May 10th and again on Sept 28th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2023 imagery for Arizona and supplemented with Sentinel2 imagery collection accessed via the European Space Agency Copernicus Browser (https://browser.dataspace.copernicus.eu/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Crops were verified in situ three times in 2023, first on May 3rd, then on Aug 16th, and finally on Dec 19th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agriculture Imagery Program County Mosaic 2023 imagery for Arizona and supplemented with the Sentinel2 imagery collection accessed via the European Space Agency, Copernicus Browser (https://browser.dataspace.copernicus.eu/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Active channel as defined by remote sensing before (2010 and after (2011) a 40 year return period flood (December 2010) within the lower Virgin River, Nevada.
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
This publication provides digital flight line data for a high-resolution horizontal magnetic gradient and radiometric survey over an area of southeast Missouri and western Illinois. The survey represents the first airborne geophysical survey conducted as part of the U.S. Geological Survey (USGS) Earth Mapping Resource Initiative (Earth MRI) effort (Day, 2019). Earth MRI is a cooperative effort between the USGS, the Association of American State Geologists, and other Federal, State, and private sector organizations to improve our knowledge of the geologic framework of the United States. Data for this survey were collected by Terraquest, Ltd. under contract with the USGS using a fixed wing aircraft with magnetometers...
thumbnail
This dataset includes the audio-magnetotelluric (AMT) sounding data collected in 2009 in and near the San Luis Basin, New Mexico. The U.S. Geological Survey conducted a series of multidisciplinary studies, including AMT surveys, in the San Luis Basin to improve understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits comprising the principal groundwater aquifers of the Rio Grande rift. The shallow unconfined and the deeper confined Santa Fe Group aquifers in the San Luis Basin are the main sources of municipal water for the region. The population of the San Luis Basin region is growing rapidly and water shortfalls could have serious consequences. Future growth and land management...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: AMT, Cerro, Cerro De La Olla, GGGSC, GPS measurement, All tags...
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This data release accompanies the Data Series report 'Compilation of new and previously published geochemical and modal data for Mesoproterozoic igneous rocks of the St. Francois Mountains, southeast Missouri’ (https://doi.org/10.3133/ds1080). The compilation includes recently acquired as well as previously published geochemical and modal petrographic data for igneous rocks in the St. Francois Mountains, southeast Missouri, and supports an ongoing effort to understand the regional geology and ore deposits of the Mesoproterozoic basement rocks of southeast Missouri, USA. This data release includes geochemical data that are (1) newly acquired by the U.S. Geological Survey (USGS) and (2) compiled from numerous sources...
thumbnail
To support research on remote sensing of rivers, specifically estimation of water depth from passive optical image data, hyperspectral image data and supporting depth measurements were collected on the Kootenai River in northern Idaho, September 27, 2017. This data release provides access to hyperspectral image acquired through this project and the supporting field-based measurements of depth and water column optical properties are available through related data releases. The hyperspectral image data were acquired by Quantum Spatial Inc. (QSI) using the ITRES CASI 1500H imaging system deployed from a Cessna Caravan manned aircraft from a flying height of 1000 m above ground level. Initial geometric and radiometric...
thumbnail
The Great Plains Landscape Conservation Cooperative (GPLCC, https://www.fws.gov/science/catalog) is a partnership that provides applied science and decision support tools to assist natural resource managers conserve plants, fish and wildlife in the mid- and short-grass prairie of the southern Great Plains. It is part of a national network of public-private partnerships — known as Landscape Conservation Cooperatives (LCCs, http://www.fws.gov/science/shc/lcc.html) — that work collaboratively across jurisdictions and political boundaries to leverage resources and share science capacity. The Great Plains LCC identifies science priorities for the region and helps foster science that addresses these priorities to support...
thumbnail
The Great Plains Landscape Conservation Cooperative (GPLCC, https://www.fws.gov/science/catalog) is a partnership that provides applied science and decision support tools to assist natural resource managers conserve plants, fish and wildlife in the mid- and short-grass prairie of the southern Great Plains. It is part of a national network of public-private partnerships — known as Landscape Conservation Cooperatives (LCCs, http://www.fws.gov/science/shc/lcc.html) — that work collaboratively across jurisdictions and political boundaries to leverage resources and share science capacity. The Great Plains LCC identifies science priorities for the region and helps foster science that addresses these priorities to support...
thumbnail
The Great Plains Landscape Conservation Cooperative (GPLCC, https://www.fws.gov/science/catalog) is a partnership that provides applied science and decision support tools to assist natural resource managers conserve plants, fish and wildlife in the mid- and short-grass prairie of the southern Great Plains. It is part of a national network of public-private partnerships — known as Landscape Conservation Cooperatives (LCCs, http://www.fws.gov/science/shc/lcc.html) — that work collaboratively across jurisdictions and political boundaries to leverage resources and share science capacity. The Great Plains LCC identifies science priorities for the region and helps foster science that addresses these priorities to support...
thumbnail
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 2014 digital elevation model (DEM), a study area boundary, and a geomorphic map. The 2014 DEM was derived from an available aerial LiDAR dataset collected in 2014 by the California Department of Conservation. The geomorphic map was derived for the study area from using a multi-scale spatial analysis. A topographic...
thumbnail
This digital dataset consists of monthly climate data from the Basin Characterization Model v8 (BCMv8) for the updated Central Valley Hydrologic Model (CVHM2) for water years 1922 to 2019. The BCMv8 data are available in a separate data release titled "The Basin Characterization Model - A regional water balance software package (BCMv8) data release and model archive for hydrologic California, water years 1896-2020". The data were modified by: (1) extracting the data from the data source for the relevant model domain and times, and (2) rescaling the 270-meter BCMv8 grid to the small watersheds that contribute boundary flow to the CVHM2 model for the hydrologic variables recharge and runoff. The three data pieces...


map background search result map search result map Coalbed Methane Field Boundaries 2007 for the Great Plains Landscape Conservation Cooperative Coalbed Methane Reserves and Production in 2006 for the Great Plains Landscape Conservation Cooperative Oil and Gas Fields for the Great Plains Landscape Conservation Cooperative Study Area Boundary Malakoff DIggins State Historic Park, California Geochemical and Modal Data for Mesoproterozoic Igneous Rocks of the St. Francois Mountains, Southeast Missouri Audiomagnetotelluric sounding data, stations 1-9, Taos Plateau Volcanic Field, New Mexico, 2009 Hyperspectral image data from the Kootenai River in northern Idaho, September 27, 2017 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Active channel in the Lower Virgin River before and after a 40 yr flood (December 2010) Airborne magnetic and radiometric survey, southeast Missouri and western Illinois, 2018-2019 Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2023 Estimated crop irrigation water use withdrawals in Hualapai Valley Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2023 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2023 Study Area Boundary Malakoff DIggins State Historic Park, California Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2023 Active channel in the Lower Virgin River before and after a 40 yr flood (December 2010) Estimated crop irrigation water use withdrawals in Hualapai Valley Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2023 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2023 Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Airborne magnetic and radiometric survey, southeast Missouri and western Illinois, 2018-2019 Geochemical and Modal Data for Mesoproterozoic Igneous Rocks of the St. Francois Mountains, Southeast Missouri Coalbed Methane Field Boundaries 2007 for the Great Plains Landscape Conservation Cooperative Oil and Gas Fields for the Great Plains Landscape Conservation Cooperative Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Coalbed Methane Reserves and Production in 2006 for the Great Plains Landscape Conservation Cooperative