Skip to main content
Advanced Search

Filters: partyWithName: Caribbean-Florida Water Science Center (X)

346 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
This U.S. Geological Survey (USGS) Data Release provides spatial water-quality data collected from the St. Lucie and Caloosahatchee Rivers in October 2017, Lake Okeechobee and the Caloosahatchee River in July 2018 and the Caloosahatchee River, St. Lucie River and Lake Okeechobee in August of 2018, south Florida. Geo-referenced measurements of near surface water temperature, specific conductance, dissolved oxygen, pH, turbidity, chlorophyll fluorescence, phycocyanin fluorescence, and fluorescence of dissolved organic matter were recorded at 5 second intervals and nitrate+nitrite was recorded at 1 minute intervals during water-quality surveys in order to create high resolution water-quality maps of the study area.
thumbnail
The dataset consists of a table in Excel format of daily evapotranspiration (ET) from 12/1/2015 to 6/13/2018 at ET station within the Blue Cypress Marsh Conservation Area near Vero Beach, Florida. Evapotranspiration was estimated using eddy-covariance methods. Data processing followed methods outlined by Shoemaker and others (2011). Ancillary data includes net radiation, latent heat, sensible heat, relative humidity, air temperature, water depth above land surface or depth to water below land surface (-), and Bowen's ratio. The site location is 27°41'46", -80°42'43". Released data include mean daily latent heat (LE, in watts per square meter), available energy (Ae, in watts per square meter), and sensible heat (H,...
thumbnail
This data release provides data for filter-passing total mercury, filter-passing methylmercury, particulate total mercury, particulate methylmercury, and dissolved organic carbon concentrations calculated for USGS station 254543080405401: Tamiami Canal at S-12D Near Miami, FL. Five site-specific regression models were developed using continuously measured temperature, turbidity, specific conductance and or fluorescence of chromophoric dissolved organic matter and concomitant discretely collected dissolved organic carbon samples to calculate continuous concentrations of mercury and carbon.
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
To accurately estimate agricultural water use or to project future water demands, a detailed inventory of current irrigated crop acreage is needed at a high level of resolution. In many Florida counties this kind of detailed high-resolution inventory is not available. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, water management district consumptive water-use permits, and digitized agricultural landuse maps developed by the Florida Department of Agriculture and Consumer Services, Florida Statewide Agricultural...
thumbnail
Potential evapotranspiration (PET), and reference evapotranspiration (ETo) are estimated on an approximately 2-kilometer (approximately 0.019 degrees longitude and 0.018 degrees latitude) spatial grid and at a daily time-scale from January 1, 2020 to December 31, 2020 for the entire State of Florida. PET and ETo were computed on the basis of solar radiation, meteorological data (min/max temperature, min/max relative humidity, and mean wind speed at 2-meter height), and shortwave blue-sky albedo data for 2020. Solar radiation was computed from Geostationary Operational Environmental Satellite (GOES) sensor data; blue-sky albedo was computed from the Moderate Resolution Imaging Spectrometer (MODIS) MCD43A1 BRDF/Albedo...
thumbnail
The GIS shapefile and summary table provide irrigated agricultural land-use for Hardee County, Florida through a cooperative project between the U.S Geological Survey (USGS) and the Florida Department of Agriculture and Consumer Services (FDACS), Office of Agricultural Water Policy. Information provided in the shapefile includes the location of irrigated land field-verified between November 2017 and September 2018, crop type, irrigation system type, and primary water source used in Hardee County, Florida. A map in pdf format is provided to illustrate shapefile information for the county.
thumbnail
This data set consists of a detailed digital map of the areal extent of fields and a summary of the irrigated acreage for the 2018 growing season developed for Charlotte County, Florida. Selected attribute data that include crop type, irrigation system, and primary water source were collected for each irrigated field.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains polygons depicting low permeability units used to define the base of the Upper Floridan aquifer.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains generalized contour lines generated from the top of Floridan aquifer system raster. See Plate 4 for a more detailed surface.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains polygon regions of the LISAPCU related to the degree of confinement. The regions are defined by geographic and hydraulic properties.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains polygons of geologic units forming the top of the Floridan aquifer system. Polygon regions were modified from U.S. Geological Survey Professional Paper 1403B (Miller, 1986).
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains a polygon representing the extent of the Lower Floridan below LISAPCU raster.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The Springs data set was initially created using the Florida Department of Environmental Protection (FDEP), but was further enhanced by adding the Georgia and Alabama springs using the USGS NWIS and GNIS databases.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains contour lines generated from the thickness of the FWZ_FAS raster.
thumbnail
The U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, calibrated a model to quantify the inflows and outflows in the Floral City, Inverness, and Hernando pools of the Tsala Apopka Lake basin in Citrus County, Florida. The calibrated model, which uses MODFLOW-NWT version 1.1.2, simulates hydrologic changes in pool stages, groundwater levels, spring flows, and streamflows caused by the diversion of streamflow from the Withlacoochee River to the Tsala Apopka Lake basin through water-control structures. A surface-water/groundwater flow model was developed using hydraulic parameters for lakes, streams, the unsaturated zone, and the underlying surficial and Upper Floridan aquifers...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains line features representing regional cross sections presented in this study.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains a gridded surface depicting thickness of the LAPPZ in feet. It was calculated by suface subtraction: fig46_top_LAPPZ_raster - fig48_top_GlaucUnit_raster
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains points depicting the thickness of the UPZ.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains a polygon representing the extent of the LAPPZ. Used to clip contours and rasters of this unit.


map background search result map search result map Data, Statistics, and Geographic Information System Files, Pertaining to Mapping of Water Levels in the Biscayne Aquifer, Water Conservation Areas, and Everglades National Park, Miami-Dade County, Florida, 2000-2009 - Scientific data associated with USGS SIR 2016-5005 GIS shapefile and related summary data describing irrigated agricultural land use in Hardee County, Florida for the 2018 growing season GIS shapefile: Charlotte County, Florida irrigated agricultural land-use for the 2018 growing season Near-Surface Spatial Water-Quality Surveys along the St. Lucie and Caloosahatchee Rivers in October 2017, Lake Okeechobee and Caloosahatchee River in July 2018, and Caloosahatchee River, St. Lucie River and Lake Okeechobee in August of 2018, south Florida (ver. 1.1, December 2020) Evapotranspiration within Blue Cypress Marsh, Vero Beach, Florida, 2015 to 2018 Calculated mercury and carbon concentrations, USGS station 254543080405401: Tamiami Canal at S-12D Near Miami, Florida, 2013-2017 Daily reference and potential evapotranspiration, and supporting meteorological data from weather stations, solar insolation data from the GOES satellite, and blue-sky albedo data from the MODIS satellite, Florida, 2020 DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina, Spring locations in Florida, Georgia, and Alabama DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Generalized contours for the top of the Floridan aquifer system DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Geologic units forming top of the Floridan aquifer system DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions of low permeability units forming the base of the Upper Floridan aquifer DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions of low-permeability units forming the LISAPCU DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Clipping boundary extent for the first permeable zone below the LISAPCU DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Clipping boundary extent for the LAPPZ DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Contours for the "freshwater" thickness of the Floridan aquifer system DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Cross-section lines used in study DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of the LISAPCU DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Points for the thickness of the UPZ MODFLOW-NWT data sets for simulation of Effects of Surface-Water and Groundwater Inflows and Outflows on the Hydrology of the Tsala Apopka Lake Basin in Citrus County, Florida Calculated mercury and carbon concentrations, USGS station 254543080405401: Tamiami Canal at S-12D Near Miami, Florida, 2013-2017 GIS shapefile: Charlotte County, Florida irrigated agricultural land-use for the 2018 growing season GIS shapefile and related summary data describing irrigated agricultural land use in Hardee County, Florida for the 2018 growing season Data, Statistics, and Geographic Information System Files, Pertaining to Mapping of Water Levels in the Biscayne Aquifer, Water Conservation Areas, and Everglades National Park, Miami-Dade County, Florida, 2000-2009 - Scientific data associated with USGS SIR 2016-5005 Near-Surface Spatial Water-Quality Surveys along the St. Lucie and Caloosahatchee Rivers in October 2017, Lake Okeechobee and Caloosahatchee River in July 2018, and Caloosahatchee River, St. Lucie River and Lake Okeechobee in August of 2018, south Florida (ver. 1.1, December 2020) Evapotranspiration within Blue Cypress Marsh, Vero Beach, Florida, 2015 to 2018 MODFLOW-NWT data sets for simulation of Effects of Surface-Water and Groundwater Inflows and Outflows on the Hydrology of the Tsala Apopka Lake Basin in Citrus County, Florida DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Points for the thickness of the UPZ DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Clipping boundary extent for the LAPPZ DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Cross-section lines used in study DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Raster surface depicting the thickness of the LISAPCU DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina, Spring locations in Florida, Georgia, and Alabama DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions of low-permeability units forming the LISAPCU DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Clipping boundary extent for the first permeable zone below the LISAPCU Daily reference and potential evapotranspiration, and supporting meteorological data from weather stations, solar insolation data from the GOES satellite, and blue-sky albedo data from the MODIS satellite, Florida, 2020 DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Contours for the "freshwater" thickness of the Floridan aquifer system DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Generalized contours for the top of the Floridan aquifer system DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions of low permeability units forming the base of the Upper Floridan aquifer DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Geologic units forming top of the Floridan aquifer system