Skip to main content
Advanced Search

Filters: partyWithName: Jacob A Fleck (X)

28 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale...
Categories: Publication; Types: Citation
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating the spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration, and particulate and dissolved methyl mercury (MeHg), concentration, in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted flow-through sensors, and c) satellite-based remote sensing. The focus of this specific Child Page is to present all field and laboratory-based data associated with...
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating the spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration and particulate and dissolved methyl mercury (MeHg) concentration in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted, flow-through, sensors and c) satellite-based remote sensing. The focus of this specific Child Page is to present all data collected during the underway boat mapping component...
thumbnail
The Sacramento / San Joaquin River Delta (SSJRD) is contaminated with legacy mercury (Hg) from historical mining and mineral processing activities throughout the watershed, as well as from contemporary atmospheric and industrial inputs. The current project was designed for the purpose of developing high-resolution spatial and temporal models for estimating concentrations of mercury species in surface waters of the SSJRD. The field component of the project brings together three high-resolution platforms for collecting water-quality data (fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, spatial mapping using boat-mounted flow-through sensors, and satellite-based remote sensing) coupled with...
thumbnail
One phenomenon that has been shown to concentrate and release per- and polyfluoroalkyl substances (PFAS) in surface water is the formation of natural foams. For surface water foams to form, surface active compounds or surfactants must be present in the water along with a source of gas bubbles. Some examples of surface-active compounds include humic and fulvic acids, colloidal particles, and lipids and proteins. The relationship between PFAS and dissolved organic matter (DOM) is important because studies have shown that DOM can affect PFAS fate and bioavailability in aquatic systems and treatment processes. The results from this assessment will improve our understanding of PFAS fate and transport in the environment....
thumbnail
The Cache Creek Settling Basin (CCSB) is a 13.3 km2 leveed basin located at the terminal drainage of the Cache Creek watershed, immediately NE of the town of Woodland (Yolo County), California and approximately 18 km NW of Sacramento, California. The basin was constructed by the U.S. Army Corps of Engineers (completed in 1937 and modified in 1993) for the purpose of trapping suspended sediment transported from the upper Cache Creek watershed during high-flow events, thus preventing sediment from entering the Yolo Bypass, a larger downstream floodwater conveyance and agricultural zone. In addition to trapping suspended sediment, the CCSB also traps sediment-associated mercury (Hg), which is particularly elevated...
thumbnail
Here we report optical data collected as part of a collaborative study between USGS Pennsylvania Water Science Center, Pennsylvania Department of Environmental Protection and Water Mission Area Proxies Project. The optical measurements reported here were collected to aide in the characterization of water sources and mixtures and establish proxies (surrogates) for per- and poly-fluorinated alkyl substances within the Neshaminy Creek basin. Data are compiled into three tables: 1) full fluorescence spectra in vectorized format, 2) full absorbance spectra, and 3) summary file of commonly extracted optical indicators and field-based sensor arrays.
thumbnail
The use of field-deployable fluorescence sensors to better understand dissolved organic matter concentrations and composition has grown immensely in recent years. Applications of these sensors to critical monitoring efforts have also grown to encompass post-fire monitoring, wastewater tracking, and use as a proxy for various contaminants. Despite the growth, it is well known that these sensors are subject to various interferences and require corrections for temperature, turbidity, and concentration effects. Although temperature corrections are widely applicable across sensors, the turbidity and concentration corrections can be site-specific and/or sensor-specific. The corrections can even be subject to changes in...
thumbnail
The USGS CAWSC Organic Matter Research Laboratory (OMRL) provides laboratory services and support to regional and national projects in the analysis of organic matter using the latest methods in absorbance and fluorescence spectroscopy. Optical measurements such as absorbance and fluorescence are used to gain insight into dissolved organic matter (DOM) composition, and can also serve as proxies for more expensive and difficult to obtain measurements. These techniques are relatively rapid and inexpensive and allow for the comprehensive tracking of DOM dynamics in aquatic ecosystems ranging from rivers and lakes to estuaries to open marine systems. Absorbance spectra and fluorescence matrices were simultaneously collected...
thumbnail
Per- and polyfluoroalkyl substances (PFAS) and co-occurring inorganic and organic contaminants are widely distributed in the environment and understanding their surface water sources is critical for water resource management. In November 2021, 13 sites were sampled along a stream reach in the Neshaminy Creek basin in southeastern Pennsylvania utilizing a time of travel sampling approach. The reach had known potential PFAS source inputs and documented PFAS detections in water samples. This data release describes the sampling approach, sample processing, laboratory analytical methods, and contains the results. Site (Table_1_NC_2021_Site_Info) and constituent information (Table_2_Constituents) are provided in tab...
thumbnail
Optical sensors measuring fluorescence of non-biological sources (e.g., dissolved organic matter, wastewater, hydrocarbons, fluorescent dyes, etc.; hereafter referred to as fDOM) are increasingly used in water quality studies because they provide proxy measurements for a variety of contaminants and constituents of concern including metals, wastewater effluent, and DOM (measured in the lab as dissolved organic carbon, (DOC)) concentrations. Similarly, sensors measuring biological (algal) fluorescence (hereafter referred to as chlorophyll (fChl) and phycocyanin (fPC), have gained popularity to measure phytoplankton concentration, biomass, and even primary productivity. As additional sensors are coupled with ongoing...
thumbnail
The Marcellus Shale Energy and Environment Laboratory (MSEEL) site is a long-term field site and laboratory at the Northeast Natural Energy LLC (NNE) production facility, adjacent to the Monongahela River, located in western Monongalia County, West Virginia, USA. NNE began drilling two horizontal production wells, MIP (Morgantown Industrial Park) -5H and MIP-3H, in the Marcellus Shale in 2014. The wells were completed in December 2015. Large volumes of wastewater are generated with natural gas production. These wastewaters contain organic and inorganic chemical constituents from fracturing fluids used during drilling and stimulation of gas in host rocks/shale, as well as chemical compounds that are derived from...
Categories: Data; Tags: Energy Resources, Environmental Health, Geochemistry, MSEEL, Marcellus Shale Energy and Environment Laboratory, Morgantown, All tags...
thumbnail
This data release presents chemical results from investigations of surface-water quality in the Potomac River watershed (encompassing Washington, D.C. and parts of West Virginia, Virginia, Pennsylvania, and Maryland) conducted during low-flow conditions in July through September of 2022. This sampling campaign was conducted at 32 stream sites throughout the watershed (Table 1). A suite of field parameters and inorganic and organic chemical characteristics at each site were characterized using seven separate analytical methods at five laboratories (Table 2). The water-quality results are presented in Table 3. Analytical methods and laboratories used were (1) major anions by ion chromatography at the U.S. Geological...
thumbnail
The USGS CAWSC Organic Matter Research Laboratory (OMRL) provides laboratory services and support to regional and national projects in the analysis of organic matter using the latest methods in absorbance and fluorescence spectroscopy. Optical measurements such as absorbance and fluorescence are used to gain insight into dissolved organic matter (DOM) composition, and can also serve as proxies for more expensive and difficult to obtain measurements. These techniques are relatively rapid and inexpensive and allow for the comprehensive tracking of DOM dynamics in aquatic ecosystems ranging from rivers and lakes to estuaries to open marine systems. Absorbance spectra and fluorescence matrices were simultaneously collected...
thumbnail
Note: this data release has been superseded by version 2.0, available here: https://doi.org/10.5066/P91LJNAU Optical sensors measuring fluorescent dissolved organic matter (fDOM) are increasingly being used in water quality studies because they provide proxy measurements for dissolved organic matter concentrations (DOC). Similarly, chlorophyll-a (chl-a) fluorescence sensors have gained popularity as a means to measure phytoplankton concentration, biomass, and even primary productivity using various approaches. As additional sensors are grouped for in situ monitoring, field calibration checks are becoming quite time consuming for even the basic set of sensors (i.e. pH, specific conductivity, turbidity) that require...
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating the spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration, and particulate and dissolved methyl mercury (MeHg), concentration, in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted flow-through sensors, and c) satellite-based remote sensing. The focus of this specific child page is to document the temporal high-resolution (15 minute) in-situ sensor...
thumbnail
Large-scale assessments are valuable in identifying primary factors controlling total mercury (THg) and monomethyl mercury (MeHg) concentrations, and distribution in aquatic ecosystems. Bed sediment THg and MeHg concentrations were compiled for > 16,000 samples collected from aquatic habitats throughout the West between 1965 and 2013. The influence of aquatic feature type (canals, estuaries, lakes, and streams), and environmental setting (agriculture, forest, open-water, range, wetland, and urban) on THg and MeHg concentrations was examined. THg concentrations were highest in lake (29.3 ± 6.5 μg kg^-1) and canal (28.6 ± 6.9 μg kg^-1) sites, and lowest in stream (20.7 ± 4.6 μg kg^-1) and estuarine (23.6 ± 5.6 μg...
Categories: Publication; Types: Citation
thumbnail
The USGS CAWSC Organic Matter Research Laboratory (OMRL) provides laboratory services and support to regional and national projects in the analysis of organic matter using the latest methods in absorbance and fluorescence spectroscopy along with standard measurement of total dissolved organic carbon and nitrogen concentration (DOC and TDN, respectively). Optical properties such as absorbance and fluorescence are used to gain insight into dissolved organic matter (DOM) composition, and can also serve as proxies for more expensive and difficult to obtain measurements. These techniques are relatively rapid and inexpensive and allow for the comprehensive tracking of DOM dynamics in aquatic ecosystems ranging from rivers...
thumbnail
Mercury (Hg) is a serious environmental problem that is impacting ecological and human health on a global scale. However, local and regional processes are largely responsible for producing methylmercury, which drives ecological risk. This is particularly true in western North America where the combination of diverse landscapes, habitat types, climates, and Hg sources may disproportionally impact the region relative to other areas in North America. Even with decades of regional Hg research and monitoring, there is still no holistic synthesis of the spatiotemporal patterns of Hg in abiotic and biotic resources across the region, nor has there been a formal, simultaneous analysis of the landscape, ecological and climatological...
thumbnail
Note: This data release has been superseded by version 2.0, available here: https://doi.org/10.5066/P9MDXR3M. The Cache Creek Settling Basin (CCSB) is a 13.3 km2 leveed basin located at the terminal drainage of the Cache Creek watershed, immediately NE of the town of Woodland (Yolo County), California and approximately 18 km NW of Sacramento, California. The basin was constructed by the U.S. Army Corps of Engineers (completed in 1937 and modified in 1993) for the purpose of trapping suspended sediment transported from the upper Cache Creek watershed during high-flow events, thus preventing sediment from entering the Yolo Bypass, a larger downstream floodwater conveyance and agricultural zone. In addition to trapping...


map background search result map search result map Shallow Sediment Geochemistry in a Mercury-Contaminated Multi-Habitat Floodplain: Cache Creek Settling Basin, Yolo County, California, 2010–17 Aqueous and solid phases partitioning of elemental constituents associated with Marcellus Shale Energy and Environment Laboratory (MSEEL) gas well produced wastewater, Morgantown, WV, 2016 - 2019 High resolution and discrete temporal and spatial water-quality measurements in support of modeling mercury and methylmercury concentrations in surface waters of the Sacramento-San Joaquin River Delta Discrete sample surface-water data for the Sacramento-San Joaquin River Delta Flow through system (FTS) and spectral absorption / attenuation sensor (ACS) data from boat mapping transects within the Sacramento-San Joaquin River Delta High resolution temporal surface water data from four continuous monitoring stations within the Sacramento-San Joaquin River Delta Data from the development and testing of a multiparameter standard solution for fluorescent dissolved organic matter (fDOM) and algal fluorescence (fChl) Shallow Sediment Geochemistry in a Mercury-Contaminated Multi-Habitat Floodplain: Cache Creek Settling Basin, Yolo County, California (version 2.0, August 2021) Data from the development and testing of a multiparameter standard solution for fluorescent dissolved organic matter (fDOM) and algal fluorescence (fChl) (ver. 2.0, July 2022) 2021 Organic Matter Research Lab Full Spectra Absorbance Data 2021 Organic Matter Research Lab Vectorized Fluorescence Data Environmental Sampling to Characterize Surface-Water Quality at 32 Sites Across the Potomac River Watershed, 2022 Fluorescence sensor measurements in sediment suspensions to evaluate turbidity corrections Optical measurements for surface water samples collected within the Neshaminy Creek basin during November 2021 Longitudinal assessment of per- and polyfluoroalkyl substances and co-occurring inorganic and organic contaminants in Neshaminy Creek, Pennsylvania, November 2021 Laboratory optical measurements in support of assessing PFAS enrichment in natural foams on surface waters within the Delaware River Basin Aqueous and solid phases partitioning of elemental constituents associated with Marcellus Shale Energy and Environment Laboratory (MSEEL) gas well produced wastewater, Morgantown, WV, 2016 - 2019 Shallow Sediment Geochemistry in a Mercury-Contaminated Multi-Habitat Floodplain: Cache Creek Settling Basin, Yolo County, California (version 2.0, August 2021) Shallow Sediment Geochemistry in a Mercury-Contaminated Multi-Habitat Floodplain: Cache Creek Settling Basin, Yolo County, California, 2010–17 Optical measurements for surface water samples collected within the Neshaminy Creek basin during November 2021 Longitudinal assessment of per- and polyfluoroalkyl substances and co-occurring inorganic and organic contaminants in Neshaminy Creek, Pennsylvania, November 2021 2021 Organic Matter Research Lab Full Spectra Absorbance Data 2021 Organic Matter Research Lab Vectorized Fluorescence Data Fluorescence sensor measurements in sediment suspensions to evaluate turbidity corrections Data from the development and testing of a multiparameter standard solution for fluorescent dissolved organic matter (fDOM) and algal fluorescence (fChl) Data from the development and testing of a multiparameter standard solution for fluorescent dissolved organic matter (fDOM) and algal fluorescence (fChl) (ver. 2.0, July 2022) High resolution and discrete temporal and spatial water-quality measurements in support of modeling mercury and methylmercury concentrations in surface waters of the Sacramento-San Joaquin River Delta Discrete sample surface-water data for the Sacramento-San Joaquin River Delta Flow through system (FTS) and spectral absorption / attenuation sensor (ACS) data from boat mapping transects within the Sacramento-San Joaquin River Delta Laboratory optical measurements in support of assessing PFAS enrichment in natural foams on surface waters within the Delaware River Basin High resolution temporal surface water data from four continuous monitoring stations within the Sacramento-San Joaquin River Delta Environmental Sampling to Characterize Surface-Water Quality at 32 Sites Across the Potomac River Watershed, 2022