Skip to main content
Advanced Search

Filters: partyWithName: Neil Kamal Ganju (X) > Types: Downloadable (X)

Folders: ROOT > Users ( Show direct descendants )

15 results (37ms)   

Location

Folder
ROOT
_Users
View Results as: JSON ATOM CSV
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
thumbnail
The lifespans of salt marshes in Atlantic-facing Eastern Shore of Virginia are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected by Sweet and others (2022). This work has been a part of the USGS’s effort to expand the national assessment of coastal change hazards and forecast products to coastal wetlands. The aim is to equip federal, state and local managers with tools to estimate the vulnerability and ecosystem service...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Unvegetated to vegetated marsh ratio (UVVR) in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is computed based on conceptual marsh units defined by Defne and Ganju (2019). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) The salt marsh complex of Cape Cod National Seashore (CACO), Massachusetts, USA and approximal wetlands were delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan,...
thumbnail
This U.S. Geological Survey data release provides data on spatial variations in tidal datums, tidal range, and nuisance flooding in Chesapeake Bay and Delaware Bay. Tidal datums are standard elevations that are defined based on average tidal water levels. Datums are used as references to measure local water levels and to delineate regions in coastal environments. Nuisance flooding refers to the sporadic inundation of low-lying coastal areas by the maximum tidal water levels during spring tides, especially perigean spring tides (also known as king tides). Nuisance flooding is independent of storm event flooding, and it represents a cumulative or chronic hazard. The data were obtained by following a consistent methodology...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Elevation distribution in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2019). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED), where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands....
thumbnail
The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague...
thumbnail
This product provides spatial variations in wave thrust along shorelines in the Chesapeake Bay. Natural features of relevance along the Bay coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal resolutions...
thumbnail
Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands,...
thumbnail
Salt marshes of the Northeastern United States (Maine to Virginia) are vulnerable to loss given their history of intensive human alteration. One direct human modification – ditching – was common across the Northeast for salt hay farming since European Colonization and for mosquito control in the first half of the 20th century. We hand-digitized linear ditches across Northeastern intertidal emergent wetlands from contemporary aerial imagery within the bounds of the National Wetland Inventory's Estuarine Intertidal Emergent Wetland areas.
thumbnail
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including Massachusetts salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands based on conceptual marsh units defined by Defne and Ganju (2019)....
thumbnail
The Herring River in Wellfleet, MA is a tidally-restricted estuary system. Management options including potential restoration of unrestricted tidal flows require an understanding of pre-restoration sediment conditions. Altering future tidal flows may cause changes in net sediment flux and direction, which could affect marsh restoration and aquaculture in Wellfleet Harbor. This research aims to measure sediment fluxes seaward of the Herring River restriction and sediment concentrations landward of the restriction. These measurements will inform management efforts by estimating the sediment budget and sediment availability after possible removal of the tidal restriction.
thumbnail
The lifespans of salt marshes in Connecticut are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected by Sweet and others (2022). This work has been a part of the USGS’s effort to expand the national assessment of coastal change hazards and forecast products to coastal wetlands. The aim is to equip federal, state and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
thumbnail
This U.S. Geological Survey data release provides data on spatial variations in climatological wave parameters (significant wave height, peak wave period, and wave power) for coastal areas along the United States East Coast and Gulf of Mexico. Significant wave height is the average wave height, from crest to trough, of the highest one-third of the waves in a specific time period. Peak wave period is the wave period associated with the most energetic waves in the wave spectrum in a specific time period. Wave power is the energy per unit length generated by the movement of ocean waves. Climatological wave conditions provide the average forcing that can lead to changes in the coastal environment. For the generation...


    map background search result map search result map Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Mean tidal range in marsh units of Cape Cod National Seashore salt marsh complex, Massachusetts Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts Wave thrust values at point locations along the shorelines of Chesapeake Bay, Maryland and Virginia Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Climatological wave height, wave period and wave power along coastal areas of the East Coast of the United States and Gulf of Mexico Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023) Lifespan of Chesapeake Bay salt marsh units Lifespan of Massachusetts salt marsh units Linear Ditches of Northeastern U.S. Coastal Marshes from Maine to Virginia Derived from 2023 2D Aerial Imagery Basemap Lifespan of marsh units in Connecticut salt marshes Lifespan of marsh units in Eastern Shore of Virginia salt marshes Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023) Mean tidal range in marsh units of Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Lifespan of marsh units in Eastern Shore of Virginia salt marshes Lifespan of marsh units in Connecticut salt marshes Lifespan of Massachusetts salt marsh units Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Lifespan of Chesapeake Bay salt marsh units Wave thrust values at point locations along the shorelines of Chesapeake Bay, Maryland and Virginia Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Linear Ditches of Northeastern U.S. Coastal Marshes from Maine to Virginia Derived from 2023 2D Aerial Imagery Basemap Climatological wave height, wave period and wave power along coastal areas of the East Coast of the United States and Gulf of Mexico