Skip to main content
Advanced Search

Filters: partyWithName: Neil Kamal Ganju (X)

Folders: ROOT > ScienceBase Catalog > USGS Data Release Products ( Show all descendants )

58 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
thumbnail
Note: The 2022 data release "Geospatial Characterization of Salt Marshes in Chesapeake Bay" incorporates the Blackwater region salt marsh dataset. (https://doi.org/10.5066/P997EJYB) This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld multiparameter sonde, and water samples were collected for determination of suspended-sediment concentration (SSC). The handheld turbidity measurements were regressed against SSC using a repeated median regression to determine a calibration curve for calibrating the turbidity time-series data to SSC. The SSC derived from the...
thumbnail
This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For...
This USGS Data Release represents geospatial data sets which were created to produce an Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the conterminous United States (2014-2018). The following listed image products were generated 1) Annual spatial datasets (rasters) from 2014 to 2018 each containing 4 bands (Band 1: Unvegetated land fraction; Band 2: Vegetated land fraction; Band 3: Water fraction; Band 4: UVVR clipped into 3 coastal regions (Atlantic (ATL) Gulf of Mexico (GOM) and Pacific (PAC). 2) Calibration/Validation Datasets - datasets which were used in the calibration and validation of the above datasets 3) Mean of masked, multiyear composite - Mean vegetated fraction in coastal wetlands in...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate...
thumbnail
Extended time-series sensor data were collected between 2012 and 2016 in surface water of a tidal salt-marsh creek on Cape Cod, Massachusetts. The objective of this field study was to measure water chemical characteristics and flows, as part of a study to quantify lateral fluxes of dissolved carbon species between the salt marsh and estuary. Data consist of in-situ measurements including: salinity, temperature, pH, dissolved oxygen, redox potential, fluorescent dissolved organic matter, turbidity and chlorophyll. Surface water flow, water level and water elevation data were also measured. The data provided in this release represent a compiled data set consisting of multiple sensor deployments between 2012 and 2016.
thumbnail
Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes and estuaries. Marsh elevation, relative to sea level, is maintained by both organic material and the deposition of inorganic sediment. Additionally, horizontal marsh extent is altered by lateral erosion and accretion. In wetlands within and near Grand Bay National Estuarine Research Reserve, parts of the salt marsh are eroding relatively rapidly. To understand the connection between sediment fluxes and these processes, the U.S. Geological Survey made oceanographic and water-quality measurements from August 2, 2016, to January 28, 2017, to quantify suspended-sediment concentration and sediment transport in tidal channels...
thumbnail
Assessment of geochemical cycling within tidal wetlands and measurement of fluxes of dissolved and particulate constituents between wetlands and coastal water bodies are critical to evaluating ecosystem function, service, and status. The U.S. Geological Survey and collaborators collected surface water and porewater geochemical data from a tidal wetland located on the eastern shore of Sage Lot Pond in Mashpee, Massachusetts, within the Waquoit Bay National Estuarine Research Reserve, between 2012 and 2019. Additional porewater geochemical and field data from a tidal wetland on the eastern shore of Great Pond in East Falmouth, MA are also included. These data can be used to evaluate biogeochemical conditions and cycling...
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
thumbnail
Natural and anthropogenic contaminants, pathogens, and viruses are found in soils and sediments throughout the United States. Enhanced dispersion and concentration of these environmental health stressors in coastal regions can result from sea level rise and storm-derived disturbances. The combination of existing environmental health stressors and those mobilized by natural or anthropogenic disasters could adversely impact the health and resilience of coastal communities and ecosystems. This dataset displays the exposure potential to environmental health stressors in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. Exposure...
thumbnail
The lifespans of salt marshes in Atlantic-facing Eastern Shore of Virginia are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected by Sweet and others (2022). This work has been a part of the USGS’s effort to expand the national assessment of coastal change hazards and forecast products to coastal wetlands. The aim is to equip federal, state and local managers with tools to estimate the vulnerability and ecosystem service...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Unvegetated to vegetated marsh ratio (UVVR) in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is computed based on conceptual marsh units defined by Defne and Ganju (2019). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) The salt marsh complex of Cape Cod National Seashore (CACO), Massachusetts, USA and approximal wetlands were delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan,...
thumbnail
Note: this data release is under revision and is temporarily unavailable. This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast...


map background search result map search result map Exposure potential of salt marsh units in Edwin B. Forsythe National Wildlife Refuge to environmental health stressors Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts U.S. Geological Survey hydrodynamic model simulations for Barnegat Bay, New Jersey, during Hurricane Sandy, 2012 Time-series of biogeochemical and flow data from a tidal salt-marsh creek, Sage Lot Pond, Waquoit Bay, Massachusetts, 2012-2016 (ver. 2.0, July 2023) Coastal wetlands from Jamaica Bay to western Great South Bay, New York Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor Suspended-sediment concentration data from water samples collected in 2016-17 in Grand Bay, Alabama and Mississippi Coastal wetlands of eastern Long Island, New York (ver. 2.0, March 2024) An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Conterminous United States (2014-2018) Geospatial Characterization of Salt Marshes for Massachusetts Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Geospatial characterization of salt marshes in Chesapeake Bay Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 Coastal wetlands of eastern Long Island, New York Lifespan of marsh units in Eastern Shore of Virginia salt marshes Time-series of biogeochemical and flow data from a tidal salt-marsh creek, Sage Lot Pond, Waquoit Bay, Massachusetts, 2012-2016 (ver. 2.0, July 2023) Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Suspended-sediment concentration data from water samples collected in 2016-17 in Grand Bay, Alabama and Mississippi Coastal wetlands from Jamaica Bay to western Great South Bay, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Exposure potential of salt marsh units in Edwin B. Forsythe National Wildlife Refuge to environmental health stressors U.S. Geological Survey hydrodynamic model simulations for Barnegat Bay, New Jersey, during Hurricane Sandy, 2012 Lifespan of marsh units in Eastern Shore of Virginia salt marshes Coastal wetlands of eastern Long Island, New York (ver. 2.0, March 2024) Coastal wetlands of eastern Long Island, New York Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 Geospatial Characterization of Salt Marshes for Massachusetts Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Geospatial characterization of salt marshes in Chesapeake Bay An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Conterminous United States (2014-2018)