Skip to main content
Advanced Search

Filters: partyWithName: Michael J Osland (X) > partyWithName: Nicholas M Enwright (X)

Folders: ROOT > ScienceBase Catalog ( Show direct descendants )

37 results (112ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Barrier islands provide important ecosystem services, including storm protection and erosion control to the mainland, habitat for fish and wildlife, and tourism (Barbier and others, 2011; Feagin and others, 2010). These islands tend to be dynamic due to their location along the estuarine-marine interface. Besides gradual changes caused by constant forces, such as currents and tides, barrier islands face numerous threats including hurricanes, accelerated sea-level rise, oil spills, and anthropogenic impacts (Pilkey and Cooper, 2014). These threats are likely to influence the future of barrier islands in the latter part of the 21st century, especially as climate-related threats to coastal areas are expected to increase...
Abstract (from Springer): Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for...
Categories: Publication; Types: Citation
thumbnail
This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Timucuan Ecological and Historic Preserve. These datasets were developed using 1-m digital elevation model (DEM) from 2018 with reduced elevation error in coastal wetlands (McHenry and others, 2023). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding...
thumbnail
To quantify the potential for landward migration at the estuary level, we developed a geospatial dataset for the conterminous United States (CONUS) that identifies the boundaries for estuarine drainage areas. Nine estuarine drainage areas in south Florida were delineated using data developed by the South Florida Water Management District (SFWMD 2018). For the rest of CONUS, we used information contained within the National Fish Habitat Action Plan (NFHAP) - Coastal Spatial Framework (CSF) (National Centers for Coastal Ocean Science 2021). The original NFHAP-CSF data included 612 drainage areas, which were too many for our purposes. Therefore, we merged smaller drainage areas with larger, adjacent drainage areas...
thumbnail
We quantified the potential area available for landward migration of tidal saline wetlands and freshwater wetlands due to sea-level rise (SLR) at the estuary scale for 166 estuarine drainage areas and at the state scale for 22 coastal states and District of Columbia. We used 2016 Coastal Change Analysis Program (C-CAP) data in combination with the future wetland migration data under the 1.5 m global SLR scenario to evaluate the potential for wetland migration into all the individual C-CAP classes and into the following six land cover categories: (1) freshwater forest (wetland); (2) freshwater marsh (wetland); (3) terrestrial forest (upland); (4) terrestrial grassland (upland); (5) agricultural croplands (upland);...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
thumbnail
This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s San Juan National Historic Site. These datasets were developed using 1-m digital elevation model (DEM) from the 3D Elevation program. This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding thresholds defined by the National Oceanic and Atmospheric...
thumbnail
This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s De Soto National Memorial. These datasets were developed using 1-m digital elevation model (DEM) from the 3D Elevation program. This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding thresholds defined by the National oceanic and Atmospheric Administration...
Coastal wetlands provide many valuable benefits to people and wildlife, including critical habitat, improved water quality, reduced flooding impacts, and protected coastlines. However, in the 21st century, accelerated sea-level rise and coastal development are expected to greatly alter coastal landscapes across the globe. The future of coastal wetlands is uncertain, challenging coastal environmental managers to develop conservation strategies that will increase the resilience of these valuable ecosystems to change and preserve the benefits they provide. One strategy for preparing for the effects of sea-level rise is to ensure that there is space available for coastal wetlands to migrate inland. In a recent study,...
thumbnail
This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Biscayne National Park. For information on the digital elevation model (DEM) source used to develop these datasets refer to the corresponding spatial metadata file (Danielson and others, 2023). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2040 and 2080 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major hight tide flooding...
thumbnail
A barrier island habitat prediction model was used to forecast barrier island habitats (for example, beach, dune, intertidal marsh, and woody vegetation) for Dauphin Island, Alabama, based on potential island configurations associated with a variety of restoration measures and varying future conditions of storminess and sea-levels. In this study, we loosely coupled a habitat model framework with decadal hydrodynamic geomorphic model outputs to forecast habitats for 2 potential future conditions related to storminess (that is, "medium" storminess and "high" storminess based on storm climatology data) and 4 sea-level scenarios (that is, a "low" increase in sea level 0.3 m by around 2030 and 2050 and 1.0 m by around...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Big Cypress National Preserve. For information on the digital elevation model (DEM) source used to develop these datasets refer to the corresponding spatial metadata file (Danielson and others, 2023). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
thumbnail
Global climate change is leading to large-scale shifts in species’ range limits. For example, rising winter temperatures are shifting the abundance and distributions of tropical, cold sensitive plant species towards higher latitudes. Coastal wetlands provide a prime example of such shifts, with tropical mangrove forests expanding into temperate salt marshes as winter warming alleviates past geographic limits set by cold intolerance. These rapid changes are dynamic and challenging to monitor, and uncertainty remains regarding the extent of mangrove expansion near poleward range limits. Here, we synthesized existing datasets and expert knowledge to assess the current (i.e., 2021) distribution of mangroves near dynamic...
thumbnail
This dataset includes elevation-based probability and depth statistics for estimating inundation under various sea-level rise and high tide flooding scenarios in and around the National Park Service’s Dry Tortugas National Park. These datasets were developed using digital elevation model (DEM) from National Oceanic and Atmospheric Administration (NOAA). This data release includes results from analyses of two local sea-level rise scenarios for two-time steps — the Intermediate-Low and Intermediate-High for 2050 and 2100 from Sweet and others (2022). Additionally, this data release includes maps of inundation probability under the minor, moderate, and major high tide flooding thresholds defined by NOAA. We estimated...
A barrier island habitat prediction model was used to forecast barrier island habitats (for example, beach, dune, intertidal marsh, and woody vegetation) for Dauphin Island, Alabama, based on potential island configurations associated with a variety of restoration measures and varying future conditions of storminess and sea level (Enwright and others, 2020). This USGS data release contains five habitat model predictions from the aforementioned modeling effort. These include: (1) the contemporary period (that is, 2015); (2) with action Year 0 (that is, hypothetically, predicted habitat coverage in 2128 based on our sea-level change rate); (3) with action Year 10 (that is, predicted habitat coverage after ten years...
thumbnail
High-resolution elevation data provide a foundational layer needed to understand regional hydrology and ecology under contemporary and future-predicted conditions with accelerated sea-level rise. While the development of digital elevation models (DEMs) from light detection and ranging data has enhanced the ability to observe elevation in coastal zones, the elevation error can be substantial in densely vegetated coastal wetlands. In response, we developed a machine learning model to reduce vertical error in coastal wetlands for a 1-m DEM from 2018 that covered Nassau and Duval Counties, Florida. Error was reduced by using a random forest regression model within situ observations and predictor variables from optical...


map background search result map search result map U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) Modeling barrier island habitats using landscape position information for Dauphin Island, Alabama Landscape position-based habitat modeling for the Alabama Barrier Island feasibility assessment at Dauphin Island Assessing habitat change and migration of barrier islands Estuarine drainage area boundaries for the conterminous United States Mangrove distribution in the southeastern United States in 2021 Potential landward migration of coastal wetlands in response to sea-level rise within estuarine drainage areas and coastal states of the conterminous United States Corrected digital elevation model in coastal wetlands in Nassau and Duval Counties, Florida, 2018 Sea-level rise and high tide flooding inundation probability and depth statistics in Nassau and Duval Counties, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at Biscayne National Park, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at Big Cypress National Preserve, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at Dry Tortugas National Park, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at De Soto National Memorial, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at San Juan National Historic Site, Puerto Rico Sea-level rise and high tide flooding inundation probability and depth statistics at De Soto National Memorial, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at San Juan National Historic Site, Puerto Rico Sea-level rise and high tide flooding inundation probability and depth statistics at Dry Tortugas National Park, Florida Sea-level rise and high tide flooding inundation probability and depth statistics at Biscayne National Park, Florida Sea-level rise and high tide flooding inundation probability and depth statistics in Nassau and Duval Counties, Florida Corrected digital elevation model in coastal wetlands in Nassau and Duval Counties, Florida, 2018 Sea-level rise and high tide flooding inundation probability and depth statistics at Big Cypress National Preserve, Florida U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) Mangrove distribution in the southeastern United States in 2021 Estuarine drainage area boundaries for the conterminous United States Potential landward migration of coastal wetlands in response to sea-level rise within estuarine drainage areas and coastal states of the conterminous United States