Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Burke J Minsley (X)

Folders: ROOT > ScienceBase Catalog > USGS Lower Mississippi-Gulf Water Science Center > @ Mississippi Alluvial Plain (MAP) Regional Water-Availability Study > Hydrogeologic Framework ( Show all descendants )

7 results (7ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__USGS Lower Mississippi-Gulf Water Science Center
___@ Mississippi Alluvial Plain (MAP) Regional Water-Availability Study
____Hydrogeologic Framework
View Results as: JSON ATOM CSV
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Geophysics, All tags...
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Bayou Bartholomew, Bayou Meto, Boeuf River, Cache River, All tags...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired September 2021 to January 2022 along 27,204 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP), Mississippi Embayment, and Gulf Coastal Plain. Data were acquired by Xcalibur Multiphysics (Canada), Ltd. with three different airborne sensors: the 30Hz TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m) depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Illinois, All tags...
thumbnail
Electrical resistivity results from four regional airborne electromagnetic (AEM) surveys (Burton et al. 2024, Hoogenboom et al. 2023, Minsley et al. 2021 and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. These products were first published using data from the first two AEM regional surveys, labeled with the year “2020” (Minsley et al. 2021, Burton et al. 2021). The 3D resistivity models and select derivative products were later updated by incorporating additional data from the two subsequent AEM surveys, labeled with the year “2022” (Burton et al. 2024, Hoogenboom et...
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an all-terrain vehicle (ATV), with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square-kilometers, with 25 m separation between survey lines. Data were manually edited for noise sources such as powerlines or other buried structures and averaged to regular output soundings every 5 m along survey lines. The processed data were inverted to recover models of electrical resistivity structure as a function of depth...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
The Mississippi River Valley alluvial aquifer (“alluvial aquifer”) is one of the most extensively developed aquifers in the United States. The alluvial aquifer is present at the land surface in parts of southeastern Missouri, northeastern Louisiana, western Mississippi, western Tennessee and Kentucky near the Mississippi River, and throughout eastern Arkansas. Historical (1940–2006) and recent (2019–20) aquifer-test datasets were compiled to model transmissivity and hydraulic conductivity of the alluvial aquifer from recent (2018–19) airborne electromagnetic (AEM) survey data. This data release contains the aquifer-test and geophysical data along with computer codes written in Matlab version R2014a syntax used to...
Categories: Data; Tags: Aeromagnetic surveying, Aeroradiometric surveying, Aquifer test, Arkansas, Dar Zarrouk parameters, All tags...


    map background search result map search result map Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018 (ver. 2.0, March 2024) Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019 Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain (ver. 2.0, July 2024) Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Historical (1940–2006) and recent (2019–20) aquifer slug test datasets used to model transmissivity and hydraulic conductivity of the Mississippi River Valley alluvial aquifer from recent (2018–20) airborne electromagnetic (AEM) survey data Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022 Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018 (ver. 2.0, March 2024) Historical (1940–2006) and recent (2019–20) aquifer slug test datasets used to model transmissivity and hydraulic conductivity of the Mississippi River Valley alluvial aquifer from recent (2018–20) airborne electromagnetic (AEM) survey data Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022 Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain (ver. 2.0, July 2024)