Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > South Central CASC ( Show direct descendants )

33 results (12ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___South Central CASC
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1949 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling (Viger and Bock, 2014). Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized...
thumbnail
The development of a hydrologic foundation, essential for advancing our understanding of flow-ecology relationships, was accomplished using the high-resolution physics-based distributed rainfall-runoff model Vflo. We compared the accuracy and bias associated with flow metrics that were generated using Vflo at both a daily and monthly time step in the Canadian River basin, USA. First, we calibrated and applied bias correction to the Vflo model to simulate streamflow at ungaged catchment locations. Next, flow metrics were calculated using both simulated and observed data from stream gage locations. We found discharge predictions using Vflo were more accurate than using drainage area ratios. General correspondence...
thumbnail
Canopy Density and Canopy Structure Metrics were derived for the San Juan Mountains of Southwest Colorado from Aerial point cloud data at a 1-meter resolution. The aerial Lidar data originated from the ‘CO_Southwest_NRCS_2018’ project prepared by Quantum Spatial for the USGS from a series of flyovers between 2018 and 2019 and were made available in 2021. Canopy Density metrics include Canopy Closure (CC) and Leaf Area Index (LAI). Canopy Structure metrics include total gap area, mean distance to canopy, canopy edginess to the south and canopy edginess to the north.
thumbnail
The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) was used to assess the effects of changing climate and land disturbance on seasonal streamflow in the Rio Grande Headwaters (RGHW) region. Three applications of PRMS in the RGHW were used to simulate 1) baseline effects of climate, 2) effects of bark-beetle induced tree mortality, and 3) effects of wildfire, on components of the hydrologic cycle and subsequent seasonal streamflow runoff from April through September for water years 1980 through 2017. PRMS input files and select PRMS output variables for each simulation are contained in this data release to accompany the journal article.
Geographic patterns and time trends of water-quality, modeled streamflow, and ecological data were compared along the Canadian River and selected tributaries in northeastern New Mexico to Lake Eufaula in Oklahoma to determine effects of climate change on water quality, streamflows, fish populations and ecological flows in this watershed from 1939 to 2013. Project participants included staff from the Oklahoma Cooperative Fish and Wildlife Research Unit, Vieux and Associates, USGS New Jersey Water Science Center and the USGS Oklahoma Water Science Center. Principal project funding was by the South Central Climate Science Center, with in-kind matching from the project participant organizations.
thumbnail
Canopy Density and Canopy Structure Metrics were derived for the San Juan Mountains of Southwest Colorado from Aerial point cloud data at a 1-meter resolution. The aerial Lidar data originated from the ‘CO_Southwest_NRCS_2018’ project prepared by Quantum Spatial for the USGS from a series of flyovers between 2018 and 2019 and were made available in 2021. Canopy Density metrics include Canopy Closure (CC) and Leaf Area Index (LAI). Canopy Structure metrics include total gap area, mean distance to canopy, canopy edginess to the south and canopy edginess to the north. These Canopy Density and Canopy Structure Metrics were used to partition 100 m grid cells over the same area for a snow melt model called SNOWMODEL....
thumbnail
The use of streamflow simulations from the Vflo model and subsequent calculation of streamflow metrics to investigate flow-ecology relationships may be hindered by our inability to accurately model flow variability and extreme flows of the arid Great Plains. The Canadian River and other rivers in the Great Plains tend to have highly variable flows and harsh environmental conditions. The combination of these environmental conditions makes semi-arid and arid regions difficult to represent with a hydrologic model, especially extreme events. In some cases, overestimating flows may be acceptable to water managers (e.g., vulnerability of infrastructures), but could greatly affect estimates of fish species persistence....
thumbnail
The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) was used to assess the effects of changing climate and land disturbance on seasonal streamflow in the Rio Grande Headwaters (RGHW) region. Three applications of PRMS in the RGHW were used to simulate 1) baseline effects of climate (see RGHW-PRMS_baseline_input.zip), 2) effects of bark-beetle induced tree mortality (see RGHW-PRMS_BB_input.zip), and 3) effects of wildfire (see RGHW-PRMS_fire_input.zip), on components of the hydrologic cycle by hydrologic response unit (HRU) and subsequent seasonal streamflow runoff from April through September for water years 1980 through 2017. PRMS input files (control, climate-by-hru, data, parameter, dynamic...
thumbnail
These data were generated with MAXENT 3.3.3k freeware (Phillips et al. 2011) using climate data and fire probability data for for three time periods: reference (1900-1929), mid-century (2040-2069) and late century (2070-2099), and community occurrence point data extracted from LANDFIRE Environmental Site Potential (ESP). Future time period data are from three global climate models (GCMs): CGCM, GFDL, and HadCM3. In MAXENT, we used the logistic output format (generating presence probabilities between 0 and 1), a random test percentage of 30 (using 70 % of the occurrence points to generate the suitability model and 30 % of the occurrence points to validate it), and a jackknife test to measure variable importance....
Summary of statistics, regression analyses, LOADEST regressions, mean annual flow-weighted concentrations/values, and Kendal tau trend analyses of flow-weighted constituent concentrations of dissolved chloride, suspended sediment, dissolved oxygen, pH, and Temperature values of water samples collected intermittently at USGS streamgages on the Canadian River or its tributaries from northeastern New Mexico, to Lake Eufaula in Oklahoma from 1949-2013. Water-quality data were retrieved from the USGS NWIS system in 2014.
thumbnail
Short-term carbon accumulation rates were examined by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient in coastal Louisiana. Percent moisture, bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation and storage rates.
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
These data include snow depth and snow water equivalence (SWE) for the 2022 and 2023 water years during 16 separate field campaigns. The field area is comprised of 311 surveyed points in, on the perimeter of, and surrounding six forest openings next to Coal Creek off Coal Bank Pass in the San Juan Mountains in Southwest Colorado, USA. These measurements were taken to look at the relationship between snow accumulation and snow melt patterns between forest gaps of various sizes, and forest edges of various sizes (edge of forest gaps). Canopy metrics, including canopy height, total gap area, mean distance to canopy, canopy closure, leaf area index, non-directional edginess, canopy edginess with a southern aspect, and...
thumbnail
These data were generated with MAXENT 3.3.3k freeware (Phillips et al. 2011) using climate data and fire probability data for for three time periods: reference (1900-1929), mid-century (2040-2069) and late century (2070-2099), and community occurrence point data extracted from LANDFIRE Environmental Site Potential (ESP). Future time period data are from three global climate models (GCMs): CGCM, GFDL, and HadCM3. In MAXENT, we used the logistic output format (generating presence probabilities between 0 and 1), a random test percentage of 30 (using 70 % of the occurrence points to generate the suitability model and 30 % of the occurrence points to validate it), and a jackknife test to measure variable importance....
thumbnail
This dataset provides the water content, bulk density, carbon concentrations, nitrogen concentrations, and carbon content of all fourteen cores sampled in coastal Louisiana (CRMS 0224) in October of 2019. Each sample is identified by a unique identifier that corresponds to each site by depth increment combination. The pond age range associated with each site is provided. The depth increment associated with each sample is provided.
thumbnail
Continuous water quality sensor data were collected at USGS 292939089544400 Wilkinson Bayou cutoff north of Wilkinson Bay, LA gage. Field water-quality measurements were collected using a YSI EXO2 water-quality sonde equipped with a data logger to capture hourly data using sensors for measuring water temperature, specific conductance, salinity, pH, oxidation and reduction potential (ORP), fluorescent dissolved organic matter (fDOM), and turbidity. The monitor was housed in an 8-inch diameter polyvinyl chloride (PVC) pipe attached to a temporary wooden structure near the gage. Measurements were collected from a fixed mid-depth point in the water column. All data were collected using U.S. Geological Survey (USGS)...
thumbnail
The Rio Grande Basin Study (Basin Study) is a stakeholder-led project funded through the U.S. Bureau of Reclamation that is developing climate adaptation strategies to address the growing gap between water supply and demand in the Upper Rio Grande Basin in Colorado, New Mexico, and Texas. The role of the USGS in the Basin Study is to simulate future streamflow using downscaled climate model projection data as input to the Upper Rio Grande Basin Precipitation-Runoff Modeling System (PRMS) (Chavarria and others, 2020). Simulated streamflow for 27 climate scenarios at 63 sites along the mainstem Rio Grande and its tributaries is used as baseline hydrologic response to climate-change emission scenarios and downscaling...
thumbnail
A new version of USGS’s FORE-SCE model was used to produce unprecedented landscape projections for four ecoregions in the Great Plains (corresponding to the area represented by the Great Plains Landscape Conservation Cooperative). The projections are characterized by 1) high spatial resolution (30-meter cells), 2) high thematic resolution (29 land use and land cover classes), 3) broad spatial extent (covering much of the Great Plains), 4) use of real land ownership boundaries to ensure realistic representation of landscape patterns, and 5) representation of both anthropogenic land use and natural vegetation change. A variety of scenarios were modeled from 2014 to 2100, with decadal timesteps (i.e., 2014, 2020, 2030,...


map background search result map search result map Monthly Water Balance Model Futures U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) 33 high-resolution scenarios of land use and vegetation change in the Great Plains Landscape Conservation Cooperative region Reference period and projected environmental suitability scores Reference period and projected environmental suitability scores-Oaks Short term soil carbon data and accretion rates from four marsh types in Mississippi River Delta collected in 2015 Fish Data Collection and Streamflows on the Canadian River 1995-2015 Point locations of daily flow rates in the Canadian River watershed derived from hydrologic modeling 1994-2013 Model input and output for hydrologic simulations in the Rio Grande Headwaters, Colorado, using the Precipitation-Runoff Modeling System (PRMS) Model input for Precipitation-Runoff Modeling System simulations in the Rio Grande Headwaters, Colorado, for water years 1980 through 2017 Hydrologic simulations using projected climate data as input to the Precipitation-Runoff Modeling System (PRMS) in the Upper Rio Grande Basin (ver. 2.0, September 2021) Cone penetrometer and elevation measurement data of coastal wetland plant states for resilience quantification, Louisiana, USA (2019) Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019 High resolution water quality and dissolved carbon data from a coastal Louisiana salt marsh from 2019 to 2022 Snow Measurements in Specific Canopy Structure Regimes for the 2022-2023 Water Years, North of Coal Creek, San Juan Mountains, Colorado, USA High Resolution Canopy Structure and Density Metrics for Southwest Colorado Derived from 2019 Aerial Lidar (1-Meter Resolution Data) High Resolution Canopy Structure and Density Metrics for Southwest Colorado Derived from 2019 Aerial Lidar (100-Meter Resolution Data) High resolution water quality and dissolved carbon data from a coastal Louisiana salt marsh from 2019 to 2022 Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019 Cone penetrometer and elevation measurement data of coastal wetland plant states for resilience quantification, Louisiana, USA (2019) Snow Measurements in Specific Canopy Structure Regimes for the 2022-2023 Water Years, North of Coal Creek, San Juan Mountains, Colorado, USA Model input and output for hydrologic simulations in the Rio Grande Headwaters, Colorado, using the Precipitation-Runoff Modeling System (PRMS) Model input for Precipitation-Runoff Modeling System simulations in the Rio Grande Headwaters, Colorado, for water years 1980 through 2017 Short term soil carbon data and accretion rates from four marsh types in Mississippi River Delta collected in 2015 High Resolution Canopy Structure and Density Metrics for Southwest Colorado Derived from 2019 Aerial Lidar (1-Meter Resolution Data) High Resolution Canopy Structure and Density Metrics for Southwest Colorado Derived from 2019 Aerial Lidar (100-Meter Resolution Data) Point locations of daily flow rates in the Canadian River watershed derived from hydrologic modeling 1994-2013 Fish Data Collection and Streamflows on the Canadian River 1995-2015 Hydrologic simulations using projected climate data as input to the Precipitation-Runoff Modeling System (PRMS) in the Upper Rio Grande Basin (ver. 2.0, September 2021) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) 33 high-resolution scenarios of land use and vegetation change in the Great Plains Landscape Conservation Cooperative region Reference period and projected environmental suitability scores Reference period and projected environmental suitability scores-Oaks Monthly Water Balance Model Futures