Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X)

Folders: ROOT > ScienceBase Catalog > Woods Hole Coastal and Marine Science Center > Coastal Wetlands Synthesis Products > COASTAL WETLANDS OF CHESAPEAKE BAY ( Show all descendants )

4 results (295ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Woods Hole Coastal and Marine Science Center
___Coastal Wetlands Synthesis Products
____COASTAL WETLANDS OF CHESAPEAKE BAY
View Results as: JSON ATOM CSV
thumbnail
Note: The 2022 data release "Geospatial Characterization of Salt Marshes in Chesapeake Bay" incorporates the Blackwater region salt marsh dataset. (https://doi.org/10.5066/P997EJYB) This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
The marsh-forest boundary in the Chesapeake Bay was determined by geoprocessing high-resolution (1 square meter) land use and land cover data sets. Perpendicular transects were cast at standard intervals (30 meters) along the boundary within a GIS by repurposing the Digital Shoreline Analysis System (DSAS) Version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. Average and maximum slope values were assigned to each transect from surface elevation data. The same values were also provided as points at the center of the transect where it crossed over the boundary. The slope values across the marsh-forest transition zone and at the boundary itself provide comprehensive data layers for local, state,...
thumbnail
Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands,...


    map background search result map search result map Slope Values Across Marsh-Forest Boundary in Chesapeake Bay Region, USA Geospatial characterization of salt marshes in Chesapeake Bay Lifespan of Chesapeake Bay salt marsh units Geospatial characterization of salt marshes in Chesapeake Bay Lifespan of Chesapeake Bay salt marsh units Slope Values Across Marsh-Forest Boundary in Chesapeake Bay Region, USA