Skip to main content
Advanced Search

Filters: partyWithName: James D Nichols (X)

Folders: ROOT > ScienceBase Catalog ( Show direct descendants )

6 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The global mean surface temperature increased 0.85°C during the period 1880 – 2012. Some climate models predict an additional warming of up 2 to 4 ◦ C over the next 100 years for the primary breeding grounds for North American ducks. Such an increase has been predicted to reduce mid - continent breeding duck populations by >70%. Managing continental duck populations in the face of climate change requires understanding how waterfowl have responded to historical spatio - temporal climatic variation. However, such responses to climate may be obscured by how ducks respond to variation in land cover. We estimated effects of climate on settlement patterns of breeding ducks in the Prairie - Parkland Region (PPR), boreal...
thumbnail
Appropriate ecological indicators of climate change can be used to measure concurrent changes in ecological systems, inform management decisions, and potentially to project the consequences of climate change. However, many of the available indicators for North American birds do not account for imperfect observation. We proposed to use correlated-detection occupancy models to develop indicators from the North American Breeding Bird Survey data. The indicators were used to test hypotheses regarding changes in range and distribution of breeding birds. The results will support the Northeast Climate Science Center’s Science Agenda, including the science priority: researching ecological vulnerability and species response...
No products are available for this SSP project at this time.
thumbnail
Researchers from North Carolina State University and the USGS integrated models of urbanization and vegetation dynamics with the regional climate models to predict vegetation dynamics and assess how landscape change could impact priority species, including North American land birds. This integrated ensemble of models can be used to predict locations where responses to climate change are most likely to occur, expressing results in terms of species persistence to help resource managers understand the long-term sustainability of bird populations.
Abstract (from https://www.ncbi.nlm.nih.gov/pubmed/26990459): There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling...


    map background search result map search result map Avian Indicators of Climate Change Based on the North American Breeding Bird Survey SERAP:  Assessment of Climate and Land Use Change Impacts on Terrestrial Species SERAP:  Assessment of Climate and Land Use Change Impacts on Terrestrial Species Avian Indicators of Climate Change Based on the North American Breeding Bird Survey