Skip to main content
Advanced Search

Filters: partyWithName: Climate Adaptation Science Centers (CASC) Program (X) > Extensions: Project (X) > partyWithName: Alaska CASC (X) > partyWithName: Jeffrey A Falke (X)

4 results (8ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
In the Gulf of Alaska, streams will experience more dramatic low water events, interspersed with larger and potentially more frequent high flow events in the coming decades. Reduced stream flows are likely to occur due to diminished snowpack and seasonal droughts, while higher flow events are likely to occur with more frequent storms and rain-on-snow events. These changes are likely to influence the growth trajectories of juvenile salmon, such as coho salmon and chinook salmon, that live up to two years in freshwater before migrating to the ocean. Stream flows can influence juvenile salmon growth by modifying food availability, water clarity, temperature, and predation risk. This high-resolution study examines...
thumbnail
Assessments that incorporate areas from land-to-ocean, or “ridge-to-reef", are critical to examine how land-use practices are altering stream discharge and nearshore marine health and productivity. Stream systems in both Alaska and Hawaiʻi are expected to experience changes in water quality associated with changing environmental conditions and increased human-use. Watershed systems throughout the Hawaiian Islands are currently experiencing impacts from climate change that affect groundwater recharge and surface runoff, erosion, and total streamflow, and cause degradation of nearshore marine habitats. This study can provide useful insight for both Alaska and Hawaiʻi by providing resources on how patterns in stream...
thumbnail
Alaska is an ecologically, commercially, and recreationally diverse state, providing value to people and terrestrial and aquatic species alike. Presently, Alaska is experiencing climatic change faster than any other area of the United States, but across the state, comprehensive environmental monitoring is logistically difficult and expensive. For instance, only about 1% of U.S Geological Survey (USGS) stream gages are in Alaska, and only about 50% of those gages measure water temperature, an important climate change indicator. In this study, predictive models are being used to map stream temperatures under current and future climate scenarios across the Yukon and Kuskokwim River basins (YKRB) at the stream reach...
thumbnail
Nearshore marine ecosystems in Alaska and Hawai‘i rely heavily on organic materials and nutrients delivered by rivers and streams. It is hypothesized that the magnitude and timing of stream flows influences this delivery of materials to coastal ecosystems. However, despite previous research on the topic, there is still considerable uncertainty about how stream flow may influence these land-to-water (“ridge-to-reef") linkages, and how climate change induced shifts in runoff may ripple across ecosystem boundaries to influence estuary and nearshore marine ecosystems and species of cultural and commercial importance (e.g., Pacific salmon, gobies, and coral reefs). This project is a collaborative study to examine...


    map background search result map search result map The Influence of Stream Flow Patterns on Juvenile Salmon Growth in Southeast Alaska Climate Vulnerability of Aquatic Species to Changing Stream Temperatures and Wildfire Across the Yukon and Kuskokwim River Basins, Alaska Coral Response to Land-to-Ocean Freshwater Flux: A Ridge-to-Reef Perspective From Land to Sea: How Will Shifts in Stream Flow Influence Delivery of Nutrients, Organic Matter, and Organisms to Alaska and Hawai‘i Nearshore Marine Ecosystems? Coral Response to Land-to-Ocean Freshwater Flux: A Ridge-to-Reef Perspective The Influence of Stream Flow Patterns on Juvenile Salmon Growth in Southeast Alaska Climate Vulnerability of Aquatic Species to Changing Stream Temperatures and Wildfire Across the Yukon and Kuskokwim River Basins, Alaska From Land to Sea: How Will Shifts in Stream Flow Influence Delivery of Nutrients, Organic Matter, and Organisms to Alaska and Hawai‘i Nearshore Marine Ecosystems?