Skip to main content
Advanced Search

Filters: partyWithName: Bennett E Hoogenboom (X) > partyWithName: Energy and Minerals (X)

22 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
Shallow subsurface electrical conductivity was mapped at North Root National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 9 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Beaver Lake National Wildlife Refuge (NWR) in northwest North Dakota using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2018. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 127 line-kilometers (km) of data were acquired over an area of approximately 8 square-kilometers. At this survey location, the 4m transmitter-receiver horizontal co-planar and perpendicular coil orientations did not function due to equipment malfunction. Data were manually edited to remove sensor dropouts,...
thumbnail
Shallow subsurface electrical conductivity was mapped at Stateline National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 3 line-kilometers (km) of data were acquired over an area of approximately .2 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Geophysics, All tags...
thumbnail
Shallow subsurface electrical conductivity was mapped at Hansen National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 10 line-kilometers (km) of data were acquired over an area of approximately .2 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Gjesdal East National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 13 line-kilometers (km) of data were acquired over an area of approximately .7 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Ward National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 15 line-kilometers (km) of data were acquired over an area of approximately .5 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Goose Lake National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 15 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Norman Lake National Wildlife Refuge (NWR) in northwest North Dakota using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2018. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 41 line-kilometers (km) of data were acquired over an area of approximately 2 square-kilometers. At this survey location, the 4m transmitter-receiver horizontal co-panar and perpendicular coil orientations did not function due to equipment malfunction. Data were manually edited to remove sensor dropouts,...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
thumbnail
Shallow subsurface electrical conductivity was mapped at Medwell National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 9 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Anderson National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 25 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Rabenberg National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 32 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
thumbnail
Shallow subsurface electrical conductivity was mapped at Dogleg National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 14 line-kilometers (km) of data were acquired over an area of approximately .6 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Bigslough National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 36 line-kilometers (km) of data were acquired over an area of approximately 2 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Lindell National Wildlife Refuge (NWR) in northwest North Dakota using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2018. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 18 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. At this survey location, the 4m transmitter-receiver horizontal co-panar and perpendicular coil orientations did not function due to equipment malfunction. Data were manually edited to remove sensor dropouts, lag...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
thumbnail
Shallow subsurface electrical conductivity was mapped at Wigeon National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 25 line-kilometers (km) of data were acquired over an area of approximately 2 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Westgard National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 21 line-kilometers (km) of data were acquired over an area of approximately .5 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...


map background search result map search result map Anderson NWR, Montana, 2017 Bigslough NWR, Montana, 2017 Dogleg NWR, Montana, 2017 Gjesdal East NWR, Montana, 2017 Goose Lake NWR, Montana, 2017 Hansen NWR, Montana, 2017 North Root NWR, Montana, 2017 Rabenberg NWR, Montana, 2017 Stateline NWR, Montana, 2017 Ward NWR, Montana, 2017 Westgard NWR, Montana, 2017 Wigeon NWR, Montana, 2017 Beaver Lake NWR, North Dakota, 2018 Lindell NWR, North Dakota, 2018 Norman Lake NWR, North Dakota, 2018 Medwell NWR, Montana, 2017 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Airborne EM, magnetic, and radiometric survey data AEM processed survey data AEM inverted resistivity models Hansen NWR, Montana, 2017 Stateline NWR, Montana, 2017 Medwell NWR, Montana, 2017 Ward NWR, Montana, 2017 Westgard NWR, Montana, 2017 Dogleg NWR, Montana, 2017 Gjesdal East NWR, Montana, 2017 Rabenberg NWR, Montana, 2017 Anderson NWR, Montana, 2017 Lindell NWR, North Dakota, 2018 Goose Lake NWR, Montana, 2017 Norman Lake NWR, North Dakota, 2018 North Root NWR, Montana, 2017 Wigeon NWR, Montana, 2017 Bigslough NWR, Montana, 2017 Beaver Lake NWR, North Dakota, 2018 Airborne EM, magnetic, and radiometric survey data AEM processed survey data AEM inverted resistivity models Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020