Skip to main content
Advanced Search

Filters: partyWithName: A. David McGuire (X) > Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Alaska CASC > FY 2011 Projects > Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change > Approved Products ( Show all descendants )

3 results (8ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Alaska CASC
____FY 2011 Projects
_____Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change
______Approved Products
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016GB005548/full): Burn area and the frequency of extreme fire events have been increasing during recent decades in North America, and this trend is expected to continue over the 21st century. While many aspects of the North American carbon budget have been intensively studied, the net contribution of fire disturbance to the overall net carbon flux at the continental scale remains uncertain. Based on national scale, spatially explicit and long-term fire data, along with the improved model parameterization in a process-based ecosystem model, we simulated the impact of fire disturbance on both direct carbon emissions and net terrestrial ecosystem carbon balance...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.13612/full): Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing...
Abstract (from http://www.ncbi.nlm.nih.gov/pubmed/26463267): Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for...