Skip to main content
Advanced Search

Filters: partyWithName: Elser, James J (X)

5 results (15ms)   

View Results as: JSON ATOM CSV
1. The effects of phosphorus enrichment and grazing snails on a benthic microbial community that builds stromatolic oncolites were examined in an experiment at Rio Mesquites, Cuatro Ci�negas, Mexico. Chemical analyses of stream water samples indicated that overall atomic ratios of total nitrogen (N) to total phosphorus (P) were approximately 110, indicating a strong potential for P-limitation of microbial growth. 2. Phosphorus enrichment involved addition of 5 ?mol Na2HPO4 L-1 to streamside microcosms receiving intermittent inputs of stream water while grazer manipulation involved removal of the dominant grazer, the snail Mexithauma quadripaludium. After 7 weeks, we examined responses in organic matter content,...
Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented. We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N�ha?1�yr?1) or low (<2 kg N�ha?1�yr?1) levels of atmospheric N deposition. High-deposition lakes had higher NO3-N and total...
The fate of carbon (C) in organisms, food webs, and ecosystems is to a major extent regulated by mass-balance principles and the availability of other key nutrient elements. In relative terms, nutrient limitation implies excess C, yet the fate of this C may be quite different in autotrophs and heterotrophs. For autotrophs nutrient limitation means less fixation of inorganic C or excretion of organic C, while for heterotrophs nutrient limitation means that more of ingested C will ??go to waste?? in the form of egestion or respiration. There is in general a mismatch between autotrophs and decomposers that have flexible but generally high C:element ratios, and consumers that have lower C:element ratios and tighter...
Contents Summary1I.Introduction2II.Variation in plant C : N : P ratios: how much and what are the sources?3III.The growth rate hypothesis in terrestrial plants and the scaling of whole-plant N : P stoichiometry and production5IV.Scaling from tissues to whole plants7V.Applications: large-scale patterns and processes associated with plant stoichiometry9VI.Global change and plants: a stoichiometric scaling perspective11VII.Synthesis and summary12Acknowledgements13References13 Summary Biological stoichiometry theory considers the balance of multiple chemical elements in living systems, whereas metabolic scaling theory considers how size affects metabolic properties from cells to ecosystems. We review recent developments...
Anthropogenic influences are simultaneously perturbing multiple biochemical cycles, as well as climate, in the biosphere (Falkowski et al. 2000). To address such effects, an explicitly multi-variate approach is needed. Furthermore, to understand the full gamut of ramifications of such changes for the functioning of ecosystems and for biodiversity in the long- and short-term, a perspective that connects fluxes of chemical elements to underlying physiological and genomic mechanisms and to evolutionary processes is needed. One such perspective is offered by biological stoichiometry, the study of the balance of energy and multiple chemical elements in living systems (Elser and Hamilton 2007), a perspective that has...
Categories: Publication; Types: Citation, Journal Citation; Tags: Oikos