Skip to main content
Advanced Search

Filters: partyWithName: Gregory T Pederson (X)

4 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods...
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods...
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought’s impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly...
Categories: Publication; Types: Citation
This study builds on a collaboration with a water resource management community of practice in the Upper Colorado River Basin to develop scenarios of future drought and assess impacts on water supply reliability. Water managers are concerned with the impacts of warming on water year streamflow, but uncertainties in projections of climate make the application of these projections to planning a challenge. Instead, water managers considered a plausible scenario for future drought to be historical droughts to which warming is added. We used a simple statistical model of water year streamflow with temperatures increased by 1 °C to 4 °C, and then examined reductions in flow and runoff efficiency (RE) with each degree...
Categories: Publication; Types: Citation


    map background search result map search result map Multi-century reconstructions of temperature, precipitation, and runoff efficiency for the Upper Colorado River Basin Multi-century reconstructions of temperature, precipitation, and runoff efficiency for the Upper Colorado River Basin Multi-century reconstructions of temperature, precipitation, and runoff efficiency for the Upper Colorado River Basin Multi-century reconstructions of temperature, precipitation, and runoff efficiency for the Upper Colorado River Basin