Skip to main content
Advanced Search

Filters: partyWithName: Jordan S. Read (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2015 Projects ( Show direct descendants )

7 results (9ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from Ecological Society of America): Successful management of natural resources requires local action that adapts to largerā€scale environmental changes in order to maintain populations within the safe operating space (SOS) of acceptable conditions. Here, we identify the boundaries of the SOS for a managed freshwater fishery in the first empirical test of the SOS concept applied to management of harvested resources. Walleye (Sander vitreus) are popular sport fish with declining populations in many North American lakes, and understanding the causes of and responding to these changes is a high priority for fisheries management. We evaluated the role of changing water clarity and temperature in the decline...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2151 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...


    map background search result map search result map Spatial data: Projected shifts in fish species dominance in Wisconsin lakes under climate change NLDAS model: Projected shifts in fish species dominance in Wisconsin lakes under climate change GENMOM model: Projected shifts in fish species dominance in Wisconsin lakes under climate change ECHAM5.0 model: Projected shifts in fish species dominance in Wisconsin lakes under climate change CM2.0 model: Projected shifts in fish species dominance in Wisconsin lakes under climate change NLDAS model: Projected shifts in fish species dominance in Wisconsin lakes under climate change GENMOM model: Projected shifts in fish species dominance in Wisconsin lakes under climate change ECHAM5.0 model: Projected shifts in fish species dominance in Wisconsin lakes under climate change CM2.0 model: Projected shifts in fish species dominance in Wisconsin lakes under climate change Spatial data: Projected shifts in fish species dominance in Wisconsin lakes under climate change