Skip to main content
Advanced Search

Filters: partyWithName: Karen Thorne, USGS Western Ecological Research Center , Research Ecologist (X)

34 results (37ms)   

View Results as: JSON ATOM CSV
thumbnail
Core names are in the format: SitecodeYear-Core#, i.e. TJE12-01 is Tijuana, 2012, 1st core. cm are the lower depth interval of the cm from which sample was taken, i.e. a sample from 50 cm would be from 49-50 cm depth. Radiocarbon data processed at the UCI Keck CCAMS Laboratory, Earth System Science Department, 2222B Croul Hall, University of California, Irvine, Irvine, CA 92697-3100, +1 949 824 3674. 137 Cs activity data analysis by Core Scientific International, 154 Red Lily Road, Winnipeg, Manitoba, Canada R3X 0G1, (204) 479-9821, (204)694-4130. Site Codes: TJE - Tijuana Estuary, UNB - Upper Newport Bay, SB - Seal Beach, MGL - Mugu Lagoon, MOB - Morro Bay, BOL - Bolinas Lagoon, BOD - Bodega Bay, JCB - Jacoby Marsh...
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
All of these files are Microsoft Excel format files that contain Surface Elevation Table (SET) data. We installed deep rod surface elevation tables (SETs) to quantify the relative contributions of surface and subsurface processes to present-day elevation change (i.e., root growth, decomposition, compaction, water flux), shallow subsidence (accretion – elevation), and shallow subsidence between shallow (root zone) and deeper (to >10 m) portions of the soil profile. We installed four SETs at each marsh site, following methods described by Cahoon et al. 2002 and Webb et al., 2013. We established two SETs in low marsh and two in high marsh at each site after visual assessment of vegetation composition and distance from...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
All of these files are Access Databases that contain RTK elevation survey data and the corresponding vegetation surveys that were conducted concurrently. Over 2,000 intertidal plots were sampled for plant cover, frequency of occurrence, and species richness across the six study sites. Approximately 57 vascular plant species were found in the study, including grasses, rushes, forbs and sedges. Vegetated marsh ranged in elevation from approximately local mean tide level (MTL) to the marsh-upland transition zone (upland plots, defined as areas estimated to flood 1 time per year on average, were not considered for further analysis). We assessed vegetation cover and species richness concurrently with elevation surveys...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
All of these files are Microsoft Excel format files that contain water level data. We deployed 1-4 water level loggers and a single conductivity logger at all sites over the study period (Figure 6; Table 2). Primary water level loggers and conductivity loggers were deployed in major tidal channels connecting the marshes to the estuary. Secondary water level loggers were deployed in the upper reaches of second-order tidal channels to capture high tides and determine inundation patterns. Water level readings were collected every six minutes. We used data from the primary water level logger at each site to develop local hydrographs and inundation rates. Loggers were surveyed by RTK GPS at least once during the period...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...


map background search result map search result map Mad River, Tidal Marsh Elevation Points Morro Bay, Tidal Marsh Elevation Points Newport, Tidal Marsh Elevation Points Pt Mugu, Tidal Marsh Elevation Points San Pablo, Tidal Marsh Elevation Points Tijuana, Tidal Marsh Elevation Points Bolinas, California: Tidal Marsh Digital Elevation Model Humboldt, California: Tidal Marsh Digital Elevation Model Morro Bay, California: Tidal Marsh Digital Elevation Model Newport, CA: Tidal Marsh Digital Elevation Model Pt. Mugu, California: Tidal Marsh Digital Elevation Model San Pablo, California: Tidal Marsh Digital Elevation Model Humboldt, California: Tidal Marsh Bathymetry Digital Elevation Model Morro Bay, California: Tidal Marsh Bathymetry Digital Elevation Models Newport, California: Tidal Marsh Bathymetry Digital Elevation Models San Pablo, California: Tidal Marsh Bathymetry Digital Elevation Models Tidal Marsh Soil Surveys Tidal Marsh Vegetation and Elevation Data Tidal Marsh Water Monitoring Data Tidal Marsh Surface Elevation Table data Tijuana, Tidal Marsh Elevation Points Newport, Tidal Marsh Elevation Points Newport, CA: Tidal Marsh Digital Elevation Model Pt Mugu, Tidal Marsh Elevation Points Pt. Mugu, California: Tidal Marsh Digital Elevation Model Bolinas, California: Tidal Marsh Digital Elevation Model Morro Bay, Tidal Marsh Elevation Points Newport, California: Tidal Marsh Bathymetry Digital Elevation Models Morro Bay, California: Tidal Marsh Bathymetry Digital Elevation Models San Pablo, California: Tidal Marsh Bathymetry Digital Elevation Models Tidal Marsh Soil Surveys Tidal Marsh Vegetation and Elevation Data Tidal Marsh Water Monitoring Data Tidal Marsh Surface Elevation Table data