Skip to main content
Advanced Search

Filters: partyWithName: Leonardo Frid (X) > Extensions: Citation (X)

Folders: ROOT > ScienceBase Catalog ( Show direct descendants )

2 results (8ms)   

View Results as: JSON ATOM CSV
Context Agent-based models (ABMs) and state-and-transition simulation models (STSMs) have proven useful for understanding processes underlying social-ecological systems and evaluating practical questions about how systems might respond to different scenarios. ABMs can simulate a variety of agents (autonomous units, such as wildlife or people); agent characteristics, decision-making, adaptive behavior, and mobility; and agent-environment interactions. STSMs are flexible and intuitive stochastic landscape models that can track scenarios and integrate diverse data. Both can be run spatially and track metrics of management success. Objectives Due to the complementarity of these approaches, we sought to couple them through...
Categories: Publication; Types: Citation
Abstract (from http://www.aimspress.com/article/10.3934/environsci.2015.2.400): State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate...