Skip to main content
Advanced Search

Filters: partyWithName: North Central CSC (X)

26 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Members of the Eastern Shoshone and Northern Arapaho Tribes have been working with an interdisciplinary team of social, ecological, and climate scientists from the North Central CSC, the High Plains Regional Climate Center, and the National Drought Mitigation Center along with other university and agency partners to prepare regular climate and drought summaries to aid in managing water resources on the Wind River Reservation and in surrounding areas.
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/WCAS-D-15-0042.1): Drought is a natural part of the historical climate variability in the northern Rocky Mountains and high plains region of the United States. However, recent drought impacts and climate change projections have increased the need for a systematized way to document and understand drought in a manner that is meaningful to public land and resource managers. The purpose of this exploratory study was to characterize the ways in which some federal and tribal natural resource managers experienced and dealt with drought on lands managed by the U.S. Department of the Interior (DOI) and tribes in two case site examples (northwest Colorado and southwest...
thumbnail
The Wind River Indian Reservation in west-central Wyoming is home to the Eastern Shoshone and Northern Arapaho tribes, who reside near and depend on water from the streams that feed into the Wind River. In recent years, however, the region has experienced frequent severe droughts, which have impacted tribal livelihoods and cultural activities. Scientists with the North Central Climate Science Center at Colorado State University, the National Drought Mitigation Center at the University of Nebraska-Lincoln, and several other university and agency partners are working closely with tribal water managers to assess how drought affects the reservation, integrating social, ecological, and hydro-climatological sciences...
The Evaporative Demand Drought Index (EDDI) is an experimental drought monitoring and early warning guidance tool. It examines how anomalous the atmospheric evaporative demand (E0; also known as "the thirst of the atmosphere") is for a given location and across a time period of interest. EDDI is multi-scalar, meaning that this period—or "timescale"—can vary to capture drying dynamics that themselves operate at different timescales; we generate EDDI at 1-week through 12-month timescales. This webpage offers a frequently updated assessment of current conditions across CONUS, southern parts of Canada, and northern parts of Mexico; a tool to generate historical time series of EDDI for a user-selected region; introductions...
This webinar was recorded as part of the Climate Change Science and Management Webinar Series (hosted in partnership by the USGS National Climate Change and Wildlife Science Center and FWS National Conservation Training Center). Webinar Summary: Accurate information on the atmospheric evaporative demand (i.e., thirst of the atmosphere) and the land-surface evaporative response (i.e., moisture supply on the land to meet the evaporative demand) is extremely important to assessing water stress on the land surface. In this webinar, the presenters will introduce real-time high resolution (1-10km) monitoring products of atmospheric evaporative demand and land-surface evaporative response models that are currently available...
Abstract (from http://link.springer.com/article/10.1007/s10113-014-0585-0): Drought is a part of the normal climate variability and the life and livelihoods of the Western United States. However, drought can also be a high impact or extreme event in some cases, such as the exceptional 2002 drought that had deleterious impacts across the Western United States. Studies of long-term climate variability along with climate change projections indicate that the Western United States should expect much more severe and extended drought episodes than experienced over the last century when most modern water law and policies were developed, such as the 1922 Colorado River Compact. This paper will discuss research examining...
Categories: Publication; Types: Citation; Tags: Drought, North Central CASC
The NC CSC project "Wind River Indian Reservation’s (WRIR) Vulnerability to the Impacts of Drought and the Development of Decision Tools to Support Drought Preparedness" supports tribal resource managers working with university and government partners to co-develop science, decision support tools, and a management plan for drought.
thumbnail
In the North Central U.S., drought is a dominant driver of ecological, economic, and social stress. Drought conditions have occurred in the region due to lower precipitation, extended periods of high temperatures and evaporative demand, or a combination of these factors. This project will continue ongoing efforts to identify and address climate science challenges related to drought, climate extremes, and the water cycle that are important for natural resource managers and scientists in the North Central region, to support adaptation planning. To accomplish this goal, researchers sought to (1) provide data and synthesis on drought processes in the region and on how evaporative stress on ecosystems will change during...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174045): Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM,...
thumbnail
The north-central region of the U.S. has experienced a series of extreme droughts in recent years, with impacts felt across a range of sectors. For example, the impacts of a 2002 drought are estimated to have resulted in a $3 billion loss to the agricultural sector in Nebraska and South Dakota. Meanwhile, the ecological impacts of drought in the region have included increased tree mortality, surges in the outbreak of pests, and intensifying forest fires. Located within this region is the Missouri River Basin, an important agricultural production area home to approximately 12 million people, including 28 Native American tribes. Tribal governments and multiple federal agencies manage land and natural resources in...
Since 2014, the High Plains Regional Climate Center, along with several partners, has worked with the Eastern Shoshone and Northern Arapaho tribes of the Wind River Indian Reservation in western Wyoming. The reservation is located in an arid, mountainous region that is prone to water resource issues. Through input from numerous workshops, webinars, and calls with tribal representatives, the HPRCC created a series of quarterly climate summaries to help the tribes make better informed on-reservation water management decisions. This Decision Dashboard is complementary to the summaries, allowing for more real-time monitoring of climate and drought conditions. This work was funded by the North Central CSC, through the...
thumbnail
In the North Central U.S., drought is a dominant driver of ecological, economic, and social stress. Drought conditions have occurred in the region due to lower precipitation, extended periods of high temperatures and evaporative demand, or a combination of these factors. This project aimed to improve our understanding of drought in the North Central region and determine what future droughts might look like over the 21st century, as climate conditions change. Researchers evaluated, with the intent to improve, available and emerging data on climate conditions that influence drought (such as changes in temperature, precipitation, evaporative demand, snow and soil moisture), as well as datasets related to the surface...
"Motivation": The motivation for this briefing is to examine the large inhomogeneity (step shift) in the observed temperature record at the SNOw TELemetry (SNOTEL) stations in the Intermountain West—Colorado, Utah and Wyoming—and its implications for climate, hydrology and ecological research in the region. This issue impacts the entire SNOTEL network across the 11 Western states, as demonstrated by Jared Oyler of the University of Montana and his colleagues in Oyler et al. (2015). Here we build on that work by performing finer-grained analyses, and identifying the implications for climate studies that have incorporated SNOTEL temperature data. In doing so, we intend to promote a broader awareness of this issue...
The North Central Climate Science Center Paleoenvironmental Database serves as an archive of Pleistocene proxy records, metadata and derivative products (e.g., chronologies, vegetation and climate reconstructions), and provides a resource for environmental research, facilitating data viewing, synthesis and joint analysis of multiproxy datasets. As of March 2014, the database consists of 1270 paleoenvironmental records, including proxies of climate (i.e., tree-rings, borehole temperatures, isotopes, diatoms, electrical conductivity, ice cores, loess accumulation), streamflow (i.e., tree rings), fauna (i.e., fossils), vegetation (i.e., pollen, plant macrofossils) and fire (i.e., tree-scars, charcoal).
Abstract (from http://journal.frontiersin.org/article/10.3389/fpls.2014.00785/abstract): Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques...
thumbnail
In southwestern Colorado, land managers anticipate the impacts of climate change to include higher temperatures, more frequent and prolonged drought, accelerated snowmelt, larger and more intense fires, more extreme storms, and the spread of invasive species. These changes put livelihoods, ecosystems, and species at risk. Focusing on communities in southwestern Colorado’s San Juan and Gunnison river basins, this project will expand opportunities for scientists, land managers, and affected residents to identify actions that can support resilience and adaptation in the face of changing climate conditions. This project builds on the project “Building Social and Ecological Resilience to Climate Change in southwestern...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/joc.4127/abstract): Gridded topoclimatic datasets are increasingly used to drive many ecological and hydrological models and assess climate change impacts. The use of such datasets is ubiquitous, but their inherent limitations are largely unknown or overlooked particularly in regard to spatial uncertainty and climate trends. To address these limitations, we present a statistical framework for producing a 30-arcsec (∼800-m) resolution gridded dataset of daily minimum and maximum temperature and related uncertainty from 1948 to 2012 for the conterminous United States. Like other datasets, we use weather station data and elevation-based predictors of temperature,...
thumbnail
This dataset is a shapefile that contains the grid outlines and identifiers for the tiles produced by the TopoWx ("Topographical Weather/Climate") temperature dataset as applied to the USGS North Central Climate Center Domain and the surrounding area of Montana. The TopoWx dataset contains gridded daily temperature and is an interpolated spatio-temporaldataset in the same vein as the well-known PRISM (http://www.prism.oregonstate.edu) and Daymet products (http://daymet.ornl.gov). Daily Tmin and Tmax are provided at a 30-arcsec resolution (~800m) from 1948-2012 along with the latest 30-year monthly normals (1981-2010). The goals of the TopoWx project were to produce a dataset that: (1) incorporates key landscape-scale...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014GL062803/abstract): Observations from the main mountain climate station network in the western United States (U.S.) suggest that higher elevations are warming faster than lower elevations. This has led to the assumption that elevation-dependent warming is prevalent throughout the region with impacts to water resources and ecosystem services. Here we critically evaluate this network's temperature observations and show that extreme warming observed at higher elevations is the result of systematic artifacts and not climatic conditions. With artifacts removed, the network's 1991–2012 minimum temperature trend decreases from +1.16°C decade−1 to +0.106°C decade−1...
thumbnail
In the North Central U.S., the rate and extent of changing climate conditions has been increasing in recent decades. These changes include shifting precipitation patterns, warming temperatures, and more frequent extreme events, such as droughts and floods. As these changes occur, managers face different challenges and have different needs, depending on the resources they manage. For example, water managers are focused on responding to changes in water availability, while wildlife managers may be more concerned with changing habitat conditions – whether it be for migratory waterfowl, coldwater fish, or large mammals. In the face of these changes, managers are seeking effective strategies for managing resources....


map background search result map search result map TopoWx ("Topographical Weather/Climate") temperature dataset tile grid Foundational Science Area: Developing Climate Change Understanding and Resources for Adaptation in the North Central U.S. Foundational Science Area: Helping People and Nature Adapt to Climate Change in the North Central U.S. The Wind River Indian Reservation’s Vulnerability to the Impacts of Drought and the Development of Decision Tools to Support Drought Preparedness Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Foundational Science Area: Maximizing Stakeholder Engagement to Support Climate Adaptation in the North Central U.S. Foundational Science Area: Ecological Drought, Climate Extremes, and the Water Cycle in the North Central U.S. The Wind River Indian Reservation’s Vulnerability to the Impacts of Drought and the Development of Decision Tools to Support Drought Preparedness Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Foundational Science Area: Helping People and Nature Adapt to Climate Change in the North Central U.S. Foundational Science Area: Developing Climate Change Understanding and Resources for Adaptation in the North Central U.S. Foundational Science Area: Maximizing Stakeholder Engagement to Support Climate Adaptation in the North Central U.S. Foundational Science Area: Ecological Drought, Climate Extremes, and the Water Cycle in the North Central U.S. TopoWx ("Topographical Weather/Climate") temperature dataset tile grid