Skip to main content
Advanced Search

Filters: partyWithName: Vladimir Romanovsky (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Alaska CASC > FY 2011 Projects > Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change > Approved Products ( Show all descendants )

4 results (56ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Alaska CASC
____FY 2011 Projects
_____Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change
______Approved Products
View Results as: JSON ATOM CSV
This report describes the progress made by the Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project for the full duration of the project (September 1, 2011 through August 31, 2016).This primary goal in this project was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada. The major activities of the project include (1) development and delivery of input data sets, (2) model coupling, (3) evaluation and applications of fire and vegetation dynamics, (4) evaluation and application of ecosystem carbon and energy balance, (5) evaluation...
Abstract (from http://www.nature.com/nature/journal/v520/n7546/full/nature14338.html): Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to...
Abstract (from http://www.ncbi.nlm.nih.gov/pubmed/26463267): Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for...