Skip to main content
Advanced Search

Filters: partyWithName: John Y Takekawa (X) > partyWithName: Michael L Casazza (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > National CASC ( Show direct descendants )

3 results (8ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___National CASC
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
[Excerpt from Introduction] "The San Francisco Bay Estuary supports a large and diverse bird community. More than 50% of most Pacific flyway diving duck populations are found in the Estuary during the winter months (Trost 2002; U.S. Fish and Wildlife Service 2002). San Francisco Bay has been designated as a site of international importance for shorebirds (Western Hemisphere Shorebird Reserve Network), supporting millions of individuals (Morrison et al. 2001; Takekawa et al. 2001; Warnock et al. 2002), including species that use tidal marsh habitats. In total, the Bay’s tidal marshes support at least 113 bird species that represent 31 families (Takekawa et al., in press)..."
thumbnail
The San Francisco Bay estuary contains the largest remaining expanse of tidal salt marshes in the western U.S. These marshes are home to a variety of federal and state protected species, such as the California clapper rail, California black rail, and the salt marsh harvest mouse. The estuary is also located on the Pacific Flyway, and is an important site for migrating and wintering birds. As climate conditions change, these salt marshes face a number of threats, including accelerated rates of sea-level rise, shifting precipitation, erosion, and more frequent and intense storms. Seas in the San Francisco Bay estuary have been rising 2.2 centimeters per decade, and could rise by as much as 1.24 meters by 2100, according...
Abstract (from SpringerLink): Salt marsh-dependent species are vulnerable to impacts of sea-level rise (SLR). Site-specific differences in ecogeomorphic processes result in different SLR vulnerabilities. SLR impacts to Ridgway’s rail (Rallus obsoletus) of Southern California (SC) and San Francisco Bay (SF), U.S.A. could foreshadow SLR effects on other coastal endemic species. Salt marsh vulnerabilities to SLR were forecasted across 14 study sites using the Wetland Accretion Rate Model of Ecosystem Resilience, which accounts for changes in above and belowground marsh processes. Changes in suitable habitat for rail were projected with MaxEnt. Under a high (166 cm/100 yr) SLR scenario, current extent of suitable habitat...
Categories: Publication; Types: Citation


    map background search result map search result map Fate of Endangered Species in San Francisco Bay Tidal Marshes with Sea-Level Rise Fate of Endangered Species in San Francisco Bay Tidal Marshes with Sea-Level Rise