Skip to main content
Advanced Search

Filters: Categories: Data (X) > Extensions: ArcGIS Service Definition (X) > Types: Map Service (X) > partyWithName: U.S. Geological Survey (X)

115 results (61ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater in karst landscapes. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems based...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Boiling Fork Creek, COWAN TENNESSEE KARST SPRING CAVE DYE TRACING TDEC USGS, Cannon County, TN, Cowan, TN, Cumberland Plateau, All tags...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
Hurricane Sandy, which made landfall on October 29, 2012, near Brigantine, New Jersey, had a significant impact on coastal New Jersey, including the large areas of emergent wetlands at Edwin B. Forsythe National Wildlife Refuge (NWR) and the Barnegat Bay region. In response to Hurricane Sandy, U.S. Geological Survey (USGS) has undertaken several projects to assess the impacts of the storm and provide data and scientific analysis to support recovery and restoration efforts. As part of these efforts, the USGS Coastal and Marine Geology Program (CMGP) sponsored Coastal National Elevation Database (CoNED) Applications Project in collaboration with the USGS National Geospatial Program (NGP), and National Oceanic and...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
These data represent water and bed sediment samples analyzed for a variety of organic compounds. The samples were collected in streams and rivers in the Chesapeake Bay watershed from 2006-2014. Water samples were collected from 61 sites and analyzed for hormones (SH2434 method; Tables 1A and 1B), pharmaceuticals (SH2080 method; Tables 2A and 2B), wastewater indicators (SH1433 method; Tables 3A and 3B), and antibiotics (LCAB method; Tables 4A and 4B). Select water samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory for pesticides (SH2001 method and SH2003 method; Tables 5A/5B and 6A/6B, respectively), wastewater indicators (SH4433 method; Tables 7A and 7B), pharmaceuticals (SH8244...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Fish community richness, density, and biomass for entire communities, Brook Trout, Rainbow Trout, and minnows, including site characteristics, and water chemistry (acid neutralizing capacity, pH, nitrate, sulfate, ammonia, calcium, and total aluminum) collected at least once and as many as 13 times at each of 52 stream sites during the same years that fish were inventoried, Great Smoky Mountains National Park, 1993-2014.
thumbnail
Water depths were measured during November 2015 and bathymetric elevations were computed for the lower Sixmile Creek reservoir in Ithaca, Tompkins County, N.Y. These data were used to create a bathymetric surface (TIN) of the reservoir. Data collected in 1938 were used to create a second TIN and a contour line shapefile. This dataset includes the ADCP-measured transect data and manually-measured point data collected by the U.S. Geological Survey, Ithaca, N.Y., during November 16-20, 2015, and the two bathymetric-surface TINS (for 1938 and 2015) and a 1938 contour line shapefile that were created by the GIS program, City of Ithaca, N.Y.
thumbnail
In cooperation with more than 10 local, State, and Federal stakeholders, the United States Geological Survey (USGS) is studying the aquifer systems in and near the Mississippi River alluvial plain (https://www2.usgs.gov/water/lowermississippigulf/map/index.html). This data release consists of continuous resistivity profiling (CRP) data collected by the USGS to characterize the electrical properties of geomorphological features in the part of the Mississippi River alluvial plain from Money, Miss. to Steiner, Miss. A total of 68 kilometers of multiple CRP profiles were obtained. The CRP data were collected by using the Ohmmapper TR-5 system (Geometrics, Inc., 2016) to determine if different geomorphological features...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...


map background search result map search result map Geospatial data set of bathymetric survey of lower Sixmile Creek Reservoir, Ithaca, New York, 2015 Geospatial Bathymetry Dataset and Elevation-Area-Capacity Table for Ashokan Reservoir, 2013 to 2014 2010: Delineation of Water Bodies in Emergent Wetlands in Coastal New Jersey Hormone, pesticide, pharmaceutical and other organic compound data for select water and bed sediment samples collected in Chesapeake Bay watershed in parts of Maryland, Pennsylvania, Virginia, and West Virginia, 2006-2014 Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Depth to the Water Raster on Long Island, New York, April–May 2016 Potentiometric Surface Contours of the Lloyd and North Shore Aquifers, April-May 2016 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Water Table Contours in the Upper Glacial and Magothy Aquifers, April-May 2016 Stream and Lake Average Water-Level Altitudes, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Data used for assessing relationships between fish assemblages and acid-base chemistry in streams of the Great Smoky Mountains National Park, 1993-2014 The use of Continuous Resistivity Profiling to Evaluate Geomorphologic Controls on Aquifer Recharge in the Mississippi Alluvial Plain from Money to Steiner, Mississippi, August 2016 to November 2016 Approximate Regional Groundwater Divide on Long Island, New York, April-May 2016 Tennessee Karst Groundwater Dye Tracing Water Year 2022 Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Jasper, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Woodbury, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Vanleer, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Geospatial data set of bathymetric survey of lower Sixmile Creek Reservoir, Ithaca, New York, 2015 Vanleer, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Jasper, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Woodbury, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Geospatial Bathymetry Dataset and Elevation-Area-Capacity Table for Ashokan Reservoir, 2013 to 2014 The use of Continuous Resistivity Profiling to Evaluate Geomorphologic Controls on Aquifer Recharge in the Mississippi Alluvial Plain from Money to Steiner, Mississippi, August 2016 to November 2016 Data used for assessing relationships between fish assemblages and acid-base chemistry in streams of the Great Smoky Mountains National Park, 1993-2014 2010: Delineation of Water Bodies in Emergent Wetlands in Coastal New Jersey Stream and Lake Average Water-Level Altitudes, April-May 2016 Approximate Regional Groundwater Divide on Long Island, New York, April-May 2016 Water Table Contours in the Upper Glacial and Magothy Aquifers, April-May 2016 Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Potentiometric Surface Contours of the Lloyd and North Shore Aquifers, April-May 2016 Depth to the Water Raster on Long Island, New York, April–May 2016 Tennessee Karst Groundwater Dye Tracing Water Year 2022 Hormone, pesticide, pharmaceutical and other organic compound data for select water and bed sediment samples collected in Chesapeake Bay watershed in parts of Maryland, Pennsylvania, Virginia, and West Virginia, 2006-2014