Skip to main content
Advanced Search

Filters: Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2015 Projects ( Show direct descendants )

34 results (20ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from Ecological Society of America): Successful management of natural resources requires local action that adapts to larger‐scale environmental changes in order to maintain populations within the safe operating space (SOS) of acceptable conditions. Here, we identify the boundaries of the SOS for a managed freshwater fishery in the first empirical test of the SOS concept applied to management of harvested resources. Walleye (Sander vitreus) are popular sport fish with declining populations in many North American lakes, and understanding the causes of and responding to these changes is a high priority for fisheries management. We evaluated the role of changing water clarity and temperature in the decline...
thumbnail
It is well recognized that the climate is warming in response to anthropogenic emission of greenhouse gases. Over the last decade, this has had a warming effect on lakes. Water clarity is also known to effect water temperature in lakes. What is unclear is how a warming climate might interact with changes in water clarity in lakes. As part of a project at the USGS Office of Water Information, several water clarity scenarios were simulated for lakes in Wisconsin to examine how changing water clarity interacts with climate change to affect lake temperatures at a broad scale. This data set contains the following parameters: year, WBIC, durStrat, max_schmidt_stability, mean_schmidt_stability_JAS, mean_schmidt_stability_July,...
thumbnail
It is well recognized that the climate is warming in response to anthropogenic emission of greenhouse gases. Over the last decade, this has had a warming effect on lakes. Water clarity is also known to effect water temperature in lakes. What is unclear is how a warming climate might interact with changes in water clarity in lakes. As part of a project at the USGS Office of Water Information, several water clarity scenarios were simulated for lakes in Wisconsin to examine how changing water clarity interacts with climate change to affect lake temperatures at a broad scale. This data set contains the following parameters: year, WBIC, durStrat, max_schmidt_stability, mean_schmidt_stability_JAS, mean_schmidt_stability_July,...
Abstract (from Ecological Society of America): Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty underestimated. We developed a novel statistical method to account for spatiotemporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations,...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
thumbnail
Climate change has been shown to influence lake temperatures globally. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. From simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We included all available supporting metadata including satellite and in-situ observations of water clarity, maximum...
Abstract (from AGU Pubs): Land and water surfaces play a critical role in hydroclimate by supplying moisture to the atmosphere, yet the ability of climate models to capture their feedbacks with the atmosphere relative to large‐scale transport is uncertain. To assess these land‐lake‐atmosphere feedbacks, we compare the controls on atmospheric moisture simulated by a regional climate model (RegCM) with observations and reanalysis products for the Great Lakes region. Three 23 year simulations, driven by one reanalysis product and two general circulation models, are performed. RegCM simulates wetter winters and drier summers than observed by up to 31 and 21%, respectively. Moisture advection exhibits similar biases,...
Abstract (from ScienceDirect): Climate change is affecting the benefits society derives from forests. One such forest ecosystem service is maple syrup, which is primarily derived from Acer saccharum(sugar maple), currently an abundant and widespread tree species in eastern North America. Two climate sensitive components of sap affect syrup production: sugar content and sap flow. The sugar in maple sap derives from carbohydrate stores influenced by prior year growing season conditions. Sap flow is tied to freeze/thaw cycles during early spring. Predicting climate effects on syrup production thus requires integrating observations across scales and biological processes. We observed sap at 6 sugar maple stands spanning...
Abstract (from ScienceDirect): Maple sugaring mainly uses sugar and red maples (Acer saccharum and Acer rubrum) by tapping them for sap in the leafless-state across large portions of their ranges. How much sap exudes from a tap hole and how sweet this sap is, can vary substantially. Year-to-year variation in sap yield and sugar content can be primarily traced to differences in meteorological conditions that drive sap runs. Yet, how much of the total variation in sap yield and sugar content is linked to the year, site, species, tree, or tap has not been investigated systematically. Here, we reviewed the literature and also compiled a dataset of sap yield and sugar content from gravity taps on 324 red and sugar maples....
Categories: Publication; Types: Citation
Climate change poses a variety of threats to biodiversity. Most efforts to assess the likely impacts of climate change on biodiversity try to rank species based on their vulnerability under changed environmental conditions. These efforts have often not considered the ability of organisms to adapt to the changing environment. Adding adaptability to models of population persistence should improve accuracy of forecasts. We approach this issue 1) by developing new models of Brook Trout response to changing stream temperatures and flows and 2) by developing a genetic tool for Brook Trout that will allow researchers to understand evolutionary adaption in the wild. Our modelling efforts showed that Brook Trout grow fastest...
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
Abstract: This research investigates how changes to floodplains in the Connecticut River Basin impact flood events. Climate impacted flows and increased development within the floodplain could lead to worsening flood events and less habitat availability for threatened species. Potential future conditions are evaluated through a wide range of scenarios to assess the range of possible impacts using a HEC-RAS 2D model. Three different flood events, 1-yr, 10-yr, and 100-yr, are evaluated for each scenario. Five metrics, Discharge, Depth, Time of Arrival, Flooding Duration, and Number of Buildings Flooded, are tracked for each scenario. These metrics are compared to select the ideal course of action given multiple potential...
Abstract (from Geoscientific Model Development): Biosphere–atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the...
thumbnail
Climate change has been shown to influence lake temperatures globally. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. From simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We included all available supporting metadata including satellite and in-situ observations of water clarity, maximum...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/lno.10557/abstract): Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity...
The red-backed salamander (Plethodon cinereus) is considered an indicator of forest health. The range of the species covers much of the eastern and central US, and is often locally abundant where it occurs, primarily in deciduous forest. While there are expectations that changes in climate will result in changes in forest ecosystems, the ability of a forest indicator such as the red-backed salamander to adapt to those changes, has not been assessed. We found that the red-backed salamander may have little adaptive capacity, but that changes in climate conditions may be buffered by salamander behavior, including its typical response to retreat underground during times of high temperature or during short-term drought....
thumbnail
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater species such as largemouth bass (Micropterus salmoides). Recent declines in walleye and increases in largemouth bass populations have raised questions regarding the future trajectories and appropriate management actions for these important species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, USA under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment success and largemouth bass relative abundance...
Abstract (from ScienceDirect): Foliar emissions of biogenic volatile organic compounds (BVOC)—important precursors of tropospheric ozone and secondary organic aerosols—vary widely by vegetation type. Modeling studies to date typically represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height variation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homogeneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting...
The “Reconnecting Floodplains and Restoring Green Space as a Management Strategy to Minimize Risk and Increase Resilience in the Context of Climate and Landscape Change” project explores green infrastructure opportunities to manage flows, connections, and watersheds in order to improve both flood protection and ecosystem services. This project’s research specifically investigates how restoring floodplains would impact human welfare and environmental conservation. Its research objectives are addressed in two parts: 1) developing a hydraulic model to illustrate how changes in floodplain management may impact flooding along the Connecticut River, and 2) developing a geo-spatial model that demonstrates the distribution...
thumbnail
It is well recognized that the climate is warming in response to anthropogenic emission of greenhouse gases. Over the last decade, this has had a warming effect on lakes. Water clarity is also known to effect water temperature in lakes. What is unclear is how a warming climate might interact with changes in water clarity in lakes. As part of a project at the USGS Office of Water Information, several water clarity scenarios were simulated for lakes in Wisconsin to examine how changing water clarity interacts with climate change to affect lake temperatures at a broad scale. This data set contains the following parameters: year, WBIC, durStrat, max_schmidt_stability, mean_schmidt_stability_JAS, mean_schmidt_stability_July,...


map background search result map search result map Wisconsin Lake Temperature Metrics Decreasing Clarity Wisconsin Lake Temperature Metrics Increasing Clarity Wisconsin Lake Temperature Metrics Stable Clarity Spatial data: Projected shifts in fish species dominance in Wisconsin lakes under climate change GENMOM model: Projected shifts in fish species dominance in Wisconsin lakes under climate change CM2.0 model: Projected shifts in fish species dominance in Wisconsin lakes under climate change Model configuration: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes Temperature data: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes GENMOM model: Projected shifts in fish species dominance in Wisconsin lakes under climate change CM2.0 model: Projected shifts in fish species dominance in Wisconsin lakes under climate change Spatial data: Projected shifts in fish species dominance in Wisconsin lakes under climate change Wisconsin Lake Temperature Metrics Decreasing Clarity Wisconsin Lake Temperature Metrics Increasing Clarity Wisconsin Lake Temperature Metrics Stable Clarity Model configuration: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes Temperature data: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes