Skip to main content
Advanced Search

Filters: Types: OGC WMS Service (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers ( Show direct descendants )

1,092 results (57ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The data contained in child items of this page were developed to support the Species Status Assessments conducted by the U.S. Fish & Wildlife Service and conservation planning for State, Federal, and non-government researchers, managers, landowners, and other partners for five focal herpetofauna species: gopher tortoise (Gopherus polyphemus), southern hognose snake (Heterodon simus), Florida pine snake (Pituophis melanoleucus mugitus), gopher frog (Lithobates capito), and striped newt (Notophthalmus perstriatus). These data were developed by the USGS Cooperative Fish & Wildlife Research Unit at the University of Georgia in collaboration with other partners. The three child items contain the following data: (1)...
thumbnail
Climate projections for the southern Great Plains, and elsewhere in the U.S., indicate that a hotter future with changes in precipitation amount and seasonality is to be expected. As plants become stressed from these changes, wildfire risk increases. One of the most valuable approaches to reducing the impacts of wildfires is fuel reduction through prescribed burns. Fuel reduction helps minimize the destruction of ecological communities, threats of future flooding, and extensive damages by lessening the intensity of future wildfires. Although safe burning practices can largely minimize the risks, prescribed burns may bring some degree of concern among practitioners. The real and perceived risks may include bodily...
thumbnail
The National and Regional Climate Adaptation Science Centers (CASCs) work with natural and cultural resource managers to gather the scientific information and build the tools needed to help fish, wildlife and ecosystems adapt to the impacts of climate change. The Northwest Climate Adaptation Science Center (NW CASC) is one of nine regional CASCs, managed by the National CASC. The NW CASC is hosted by the University of Washington with Boise State University, University of Montana, Washington State University, and Western Washington University as consortium members. To learn more about the NW CASC, please visit: www.usgs.gov/casc/northwest
thumbnail
The National and Regional Climate Adaptation Science Centers (CASCs) work with natural and cultural resource managers to gather the scientific information and build the tools needed to help fish, wildlife and ecosystems adapt to the impacts of climate change. The South Central Climate Adaptation Science Center (SC CASC) is one of nine regional CASCs, managed by the National CASC. The SC CASC is hosted by the University of Oklahoma with Texas Tech University, Louisiana State University, Chickasaw Nation, Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab as consortium members. To learn more about the SC CASC, please visit: www.usgs.gov/casc/southcentral
thumbnail
Wild insect pollination has significant positive effects on pollinator-dependent crop production. To assess the spatial distribution of demand for wild insect pollination, we mapped pollinator-dependent crops based on the 2011Cropland Data Layer.
thumbnail
Clean water is important for a variety of uses, including drinking, recreation, and as habitat for aquatic species. Nonpoint-source pollution, such as nutrients, sediment, and pesticides from agricultural runoff, is a major cause of impaired water quality in the United States . Vegetation and soil in natural land cover help to remove pollutants from runoff water before it reaches streams and other waterways by slowing water flow and physically trapping sediment. To assess the spatial distribution of water purification potential in the southeastern United States, we mapped the demand for purification as the total area of agricultural land and the supply of natural land cover in the flowpath over which water moves...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
Climate change is expected to worsen the harmful effects of invasive species on native wildlife. This presents a growing conservation challenge for invasive species managers in the southeastern United States where thousands of invasive species exist. While many of these invasive species currently have relatively small ranges in the southeastern U.S., climate change may allow them to expand into new regions. To effectively plan and respond to the redistribution of invasive species, it is crucial to coordinate existing information and identify future information needs across regional boundaries. The ultimate goal of this project is to improve invasive species management in the face of climate change by establishing...
thumbnail
The objective of this project is to map the supply of ecosystem services (where natural ecosystems have the capacity to provide a certain product or service that could be of use to people), use of those services (where people or other entities that use the product or service exist), and the condition of ecosystems providing these services over time. The resulting datasets were used to generate metrics for pilot ecosystem accounts for the southeast – part of natural capital accounts that assess ecosystems’ contributions to the economy in order to help governments better understand their reliance on natural systems and manage natural resources to ensure their benefits are sustained into the future. These data were...
thumbnail
Fire has always been a part of life in southern California. Climate change and current fire management practices have led to catastrophic losses and impacts to human health, infrastructure and ecosystems, as seen, for example, in the 2018 Montecito debris flow. Indigenous wisdom instructs that rather than suppressing fire, we should seek to be in good relationship with fire. This project centers the voices of Chumash people by revitalizing their good relationship with fire in Chumash homelands. This revitalization comes at a critical time for both fire management and revitalization of Indigenous cultural burning practices in the southwest. The project will enable the recovery and documenting of Chumash knowledge...
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Abstract Coastal marsh within Mediterranean climate zones is exposed to episodic watershed runoff and sediment loads that occur during storm events. Simulating future marsh accretion under sea level rise calls for attention to: (a) physical processes acting over the time scale of storm events and (b) biophysical processes acting over time scales longer than storm events. Using the upper Newport Bay in Southern California as a case study, we examine the influence of event-scale processes on simulated change in marsh topography by comparing: (a) a biophysical model that integrates with an annual time step and neglects event-scale processes (BP-Annual), (b) a physical model that resolves event-scale processes but...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
Drought and wildfire pose enormous threats to the integrity of natural resources that land managers are charged with protecting. Recent observations and modeling forecasts indicate that these stressors will likely produce catastrophic ecosystem transformations, or abrupt changes in the condition of plants, wildlife, and their habitats, in regions across the country in coming decades. In this project, researchers will bring together land managers who have experienced various degrees of ecosystem transformation (from not yet experiencing any changes to seeing large changes across the lands they manage) to share their perspectives on how to mitigate large-scale changes in land condition. The team will conduct surveys...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled Global Climate Models (GCMs) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The 20 future climate scenarios consist of ten GCMs with RCP 4.5 and 8.5 each: ACCESS 1.0, CanESM2, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, and MIROC5. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme...
thumbnail
Declining water levels in the Great Salt Lake are part of a larger trend of decreasing water availability in the Southwestern U.S. that presents significant challenges for people, animals, and ecosystems. One challenge is that as some lakes dry, newly exposed sediment containing heavy metals can become toxic dust that blows into populated areas. Increased air pollution and other effects of drying lakes make it critical to understand and improve decision-making for shrinking lake management. The goal of this project is to work with communities around the Great Salt Lake to understand their experiences of decreasing water levels and to ultimately help resource managers and communities develop effective, inclusive,...


map background search result map search result map Northwest CASC South Central CASC Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Climate Change Adaptation for Coastal National Wildlife Refuges Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Range-wide habitat suitability maps for at-risk species in the longleaf system Pollinator-Dependent Crops in the Southeast United States (2011) Conservation and Restoration Priorities for Water Purification Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Future of Fire in the South Central: Towards a National Synthesis of Wildland Fire Under a Changing Climate Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Cycles of Renewal: Returning Good Fire to the Chumash Homelands Multi-Decadal Simulation of Marsh Topography Under Sea Level Rise and Episodic Sediment Loads Mapping Ecosystem Services for Natural Capital Accounting Southeast Regional Invasive Species and Climate Change Management Network (SE RISCC) Mapping Community Experiences and Concerns Related to Drying Lakes in Arid Climates Multi-Decadal Simulation of Marsh Topography Under Sea Level Rise and Episodic Sediment Loads Climate Change Adaptation for Coastal National Wildlife Refuges Cycles of Renewal: Returning Good Fire to the Chumash Homelands Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Mapping Community Experiences and Concerns Related to Drying Lakes in Arid Climates Northwest CASC Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Range-wide habitat suitability maps for at-risk species in the longleaf system South Central CASC Future of Fire in the South Central: Towards a National Synthesis of Wildland Fire Under a Changing Climate Southeast Regional Invasive Species and Climate Change Management Network (SE RISCC) Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Mapping Ecosystem Services for Natural Capital Accounting Pollinator-Dependent Crops in the Southeast United States (2011) A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Conservation and Restoration Priorities for Water Purification Evaluating the Use of Models for Projecting Future Water Flow in the Southeast