Skip to main content
Advanced Search

Filters: Extensions: Citation (X) > partyWithName: Kyle W Blasch (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northwest CASC > FY 2016 Projects ( Show direct descendants )

3 results (8ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Streams are classified as perennial (flowing uninterrupted, year-round) or intermittent (flowing part of the year) or ephemeral (flowing only during rainfall events). The classifications of “streamflow permanence” were primarily established in the middle 20th century and are often outdated and inaccurate today if they were not adjusted for changes in land use, wildfires, or climate. Understanding where streams are perennial is important for a variety of reasons. For example, perennial streams receive special regulatory protections under a variety of statutes, and provide important habitat for fish, wildlife, and other species. To predict the likelihood that streams are perennial, we compiled nearly 25,000 observations...
National Hydrography Dataset (NHD) stream permanence classifications (SPC; perennial, intermittent, and ephemeral) are widely used for data visualization and applied science, and have implications for resource policy and management. NHD SPC were assigned using a combination of topographic field surveys and interviews with local residents. However, previous studies indicate that non‐NHD, in situ streamflow observations (NNO) frequently disagree with NHD SPC. We hypothesized that differences in annual climate conditions between map creation years and the years NNO were collected contributed to disagreement between NNO and NHD SPC. We compared NHD SPC to 10,055 NNO (classified as “wet” or “dry”) collected in the Pacific...
Categories: Publication; Types: Citation
Understanding streamflow in montane watersheds on regional scales is often incomplete due to a lack of data for small-order streams that link precipitation and snowmelt processes to main stem discharge. This data deficiency is attributed to the prohibitive cost of conventional streamflow measurement methods and the remote location of many small streams. Expedient and low-cost streamflow measurement methods used by resource professionals or citizen scientists can provide scientifically useful solutions to this data deficiency. To this end, four current velocity measurement methods were evaluated in a laboratory flume: the surface float, rising body, velocity head rod, and rising air bubble methods. The methods were...
Categories: Publication; Types: Citation