Skip to main content
Advanced Search

Filters: Extensions: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC ( Show direct descendants )

1,419 results (15ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Northeast CASC
Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
We present a case-study evaluation of gillnet catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gillnet time series and a negative binomial linear mixed model to partition variability into spatial and coherent temporal variance components, and we propose that variance partitioning can help quantify spatiotemporal variability and examine if variance structure differs before and after large-scale perturbation. Here, we found that average catch and total variability of catches decreased following...
This study investigates potential changes in erosion rates in the Midwestern United States under climate change, including the adaptation of crop management to climate change. Previous studies of erosion under climate change have not taken into account farmer choices of crop rotations or planting dates, which will adjust to compensate for climate change. In this study, changes in management were assigned based on previous studies of crop yield, optimal planting date, and most profitable rotations under climate change in the Midwestern United States. Those studies predicted future shifts from maize and wheat to soybeans based on price and yield advantages to soybeans. In the results of our simulations, for 10 of...
This paper presents results of a study to assess the impacts of climate change on Midwestern streams and the ability of alternative regulations to maintain critical stream conditions. The study focuses on two generic types of regulations, those that restrict withdrawals to a constant flowrate at all times and those that allow withdrawals to increase and decrease with streamflow. Trading of water withdrawal permits is also considered as an adjunt to both policies. The study uses a modeling technique based on the SWAT model, applied to data for a Midwestern river basin. Streamflow was assumed stressed by agricultural irrigation, which is most intense during times when natural streamflows are at their lowest even without...
Much time and money has been spent over the last 40 years in the U.S. by farmers, soil scientists, hydrologists, geomorphologists, engineers, and ecologists attempting to document how agricultural best management practices, natural vegetation in riparian corridors, and stream rehabilitation or bank stabilization reduces sediment yields and improves ecological conditions at watershed outlets. These issues are especially pertinent in the steep erodible landscape of the Driftless Area in southwest Wisconsin, where many miles of world-class spring-fed trout streams remain on state impaired waters lists from excessive sedimentation and degraded habitat even though this area was the birthplace of the conservation movement...
Although scientists have identified many ways to reduce the negative effects of climate change on wildlife, this information is not readily available to natural resource managers. For successful wildlife adaptation to climate change, natural resource managers should have current, peerreviewed information to guide their decisions. We conducted a review of over 1300 publications for recommendations to manage wildlife in the face of climate change. We then summarized the findings as the wildlife adaptation menu, a tool to inform planning and decision-making in an accessible format.
The impacts of climate change and forest pests and diseases are making it harder for natural resource managers to sustain important forest habitat for wildlife species and, more generally, sustain the benefits that we all derive from forest ecosystems. The natural resource management and research communities have a general understanding of what broad climate adaptation strategies may to best to navigate these mounting challenges. But what we don’t yet fully understand is how effective implementation of these broad strategies actually is, in particular forest types and in particular places. Plus, the research community needs to better understand what knowledge and tools managers need to resolve remaining uncertainties...
Categories: Publication; Types: Citation
This report provides an overview of the state of the science for climate impacts and adaptation options across the NEAFWA region and for Regional Species of Greatest Conservation Need (RSGCN) and associated habitats.
Categories: Publication; Types: Citation
Abstract (from ESA Journals): Climate change is a well-documented driver and threat multiplier of infectious disease in wildlife populations. However, wildlife disease management and climate-change adaptation have largely operated in isolation. To improve conservation outcomes, we consider the role of climate adaptation in initiating or exacerbating the transmission and spread of wildlife disease and the deleterious effects thereof, as illustrated through several case studies. We offer insights into best practices for disease-smart adaptation, including a checklist of key factors for assessing disease risks early in the climate adaptation process. By assessing risk, incorporating uncertainty, planning for change,...
Categories: Publication; Types: Citation
Abstract (from http://www.tandfonline.com/doi/full/10.1080/00028487.2016.1150879): Long-term sampling of fisheries data is an important source of information for making inferences about the temporal dynamics of populations that support ecologically and economically important fisheries. For example, time series of catch-per-effort data are often examined for the presence of long-term trends. However, it is also of interest to know whether certain sampled locations are exhibiting temporal patterns that deviate from the overall pattern exhibited across all sampled locations. Patterns at these “unusual” sites may be the result of site-specific abiotic (e.g., habitat) or biotic (e.g., the presence of an invasive species)...
Abstract (from ESA): Estimating population size and resource selection functions (RSFs) are common approaches in applied ecology for addressing wildlife conservation and management objectives. Traditionally such approaches have been undertaken separately with different sources of data. Spatial capture–recapture (SCR) provides a hierarchical framework for jointly estimating density and multi‐scale resource selection, and data integration techniques provide opportunities for improving inferences from SCR models. Despite the added benefits, there have been few applications of SCR‐RSF integration, potentially due to complexities of specifying and fitting such models. Here, we extend a previous integrated SCR‐RSF model...
Abstract (from Wiley Online Library): Annual distributions of waterfowl during the nonbreeding period can influence ecological, cultural, and economic relationships. We used previously developed Weather Severity Indices (WSI) that explained migration by dabbling ducks in eastern North America and weather data from the North American Regional Reanalysis to develop an open-access internet-based tool (i.e., WSI web app) to visualize and query WSI data. We used data generated by the WSI web app to determine whether the weather known to elicit southerly migration by dabbling ducks had changed, from October to April 1979 to 2013. We detected that the amount of area in the Mississippi and Atlantic Flyways with weather...
Climate change is affecting species and ecosystems across the Northeast and Midwest U.S. Natural resource managers looking to maintain ecological function and species persistence have requested information to improve resource management in the face of climate change. Leveraging the research that has already been supported by the Northeast Climate Adaptation Science Center and its partners, this project used the latest modeling techniques combined with robust field data to examine the impact of specific climate variables, land use change, and species interactions on the future distribution and abundance of species of conservation concern. An interdisciplinary team worked to understand the mechanisms that are driving...