Skip to main content
Advanced Search

Filters: partyWithName: Steven W Hostetler (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > National CASC > FY 2009 Projects ( Show direct descendants )

4 results (9ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This project produced long simulations (multi-decadal to multi-century in scale) of past, present, and future regional climate at a grid spacing of 50 kilometers (km) over North America and at a grid spacing of 15 km over western and eastern North America. These model runs were the first attempt to achieve coordinated, high-resolution downscaling with such wide geographic and temporal coverage. The objectives of this project were to (1) understand the nature of climate change and variability, (2) quantify the climate-driven responses and feedbacks of terrestrial and aquatic ecosystems, wildfire, the hydrologic cycle, and alpine glaciers, and (3) provide climate information in a form that is useful to a wide range...
thumbnail
Conservation and natural resource managers require information about potential future climate changes for the areas they manage, in terms that are relevant for the specific biotic and environmental resources likely to be affected by climate change. We produced a suite of data sets that provide managers with climate and climate-derived data and a visualization approach that allows managers to map where 1) a managed area's potential future climate is located on today's landscape (i.e., the locations of the modern analogues of future climate) and 2) the areas to which the present climate (and habitat) of managed areas are projected to move. We produced downscaled climate data from historical (1901-2000) data sets and...
Abstract: We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems) and MOM2 (Modular Ocean Model version 2) nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2) and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where...
Categories: Publication; Types: Citation; Tags: National CASC
thumbnail
Fisheries and aquatic habitats throughout the United States are in dire need of protection or restoration because human activities have resulted in severe degradation of those habitats. Further, future climatic changes will continue to affect human land-use, temperature, and water flows. Natural resource managers need to identify and prioritize habitats so that limited time and funding can be focused on habitats that are in most need of protection both now and in the future, based on projected climate changes. This project was comprised of a team of scientists from the US Geological Survey, Kansas State University, Michigan State University, Penn State University, the University of Minnesota-Duluth, the University...


    map background search result map search result map Science to Inform Future Management of the Nation's Fisheries and Aquatic Habitat A Visualization Approach for Projecting Future Climate Distributions in North America Downscaled Climate Change Modeling for the Conterminous United States (National Assessment) Science to Inform Future Management of the Nation's Fisheries and Aquatic Habitat Downscaled Climate Change Modeling for the Conterminous United States (National Assessment) A Visualization Approach for Projecting Future Climate Distributions in North America