Skip to main content
Advanced Search

Filters: Categories: Publication (X) > partyWithName: South Central CSC (X)

Folder: ROOT ( Show direct descendants )

22 results (18ms)   

Location

Folder
ROOT
Filters
Date Range
Extensions
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://link.springer.com/article/10.1007/s11069-016-2376-z): Drought is among the most insidious types of natural disasters and can have devastating economic and human health impacts. This research analyzes the relationship between two readily accessible drought indices—the Palmer Drought Severity Index (PDSI) and Palmer Hydrologic Drought Index (PHDI)—and the damage incurred by such droughts in terms of monetary loss, over the 1975–2010 time period on monthly basis, for five states in the south-central USA. Because drought damage in the Spatial Hazards Events and Losses Database for the United States (SHELDUS™) is reported at the county level, statistical downscaling techniques were used to estimate...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/gdj3.47/abstract): Two datasets of soil temperature observations collected at Norman, Oklahoma, USA, were analysed to study horizontal and vertical variability in their observations. The first dataset comprised 15-min resolution soil temperature observations from 20 September 2011 to 18 November 2013 in seven plots across a 10-m transect. In each plot, sensors were located at depths of 5, 10, and 30 cm. All seven plots observed fairly consistent maximum soil temperature observations during the spring, fall, and winter months. Starting in late May, the observed spread in soil temperatures across the 10-m transect increased significantly until August when the...
Abstract (From http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-15-0062.1): Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall...
Abstract (from http://link.springer.com/article/10.1007/s11258-016-0568-y): Resprouting is a key functional trait for species in disturbance prone environments. In many semi-arid environments, woody plants face both fire and drought as recurring disturbances. Past work has demonstrated that oaks inhabiting sky-island forests of the northern Sierra Madre Oriental have differing microhabitat preferences and heavy stem dieback occured during the historic 2011 drought indicating potential xylem failure. These oak species, representing two sections within the genus, are all post-fire resprouters: they can resprout from underground storage organs when fire kills above ground tissue. Resprouts provide an opportunity to...
Abstract (from Wiley): An estimate of a river's natural flow regime is useful for water resource planning and ecosystem rehabilitation by providing insight into the predisturbance form and function of a river. The natural flow regime of most rivers has been perturbed by development during the 20th century and in some cases, before stream gaging began. The temporal resolution of natural flows estimated using traditional methods is typically not sufficient to evaluate cues that drive native ecosystem function. Additionally, these traditional methods are watershed specific and require large amounts of data to produce accurate results. We present a mass balance method that estimates natural flows at daily time step...
The south-central U.S. exists in a zone of dramatic transition in terms of eco-climate system diversity. Ecosystems across much of the region rely on warm-season convective precipitation. These convective precipitation is subject to large uncertainties under climate change scenario, possibly leading to gradual or sudden changes in habitats, and ecosystems. The convective precipitation in this region, occurring on a range of time and space scales, is extremely challenging to predict in future climate scenario. In this project, we established a unique, cutting-edge, dynamic downscaling capability to address the challenge of predicting precipitation in the south-central U.S. in current and future climate scenarios....
Abstract (from http://link.springer.com/article/10.1007/s10584-016-1598-0): Empirical statistical downscaling (ESD) methods seek to refine global climate model (GCM) outputs via processes that glean information from a combination of observations and GCM simulations. They aim to create value-added climate projections by reducing biases and adding finer spatial detail. Analysis techniques, such as cross-validation, allow assessments of how well ESD methods meet these goals during observational periods. However, the extent to which an ESD method’s skill might differ when applied to future climate projections cannot be assessed readily in the same manner. Here we present a “perfect model” experimental design that quantifies...
Abstract (from http://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001282): A novel multisite cascading calibration (MSCC) approach using the shuffled complex evolution–University of Arizona (SCE-UA) optimization method, developed at the University of Arizona, was employed to calibrate the variable infiltration capacity (VIC) model in the Red River Basin. Model simulations were conducted at 35 nested gauging stations. Compared with simulated results using a priori parameters, single-site calibration can improve VIC model performance at specific calibration sites; however, improvement is still limited in upstream locations. The newly developed MSCC approach overcomes this limitation. Simulations using MSCC...
In 2015, the Red River Basin experienced the tail end of a severe drought followed by exceptional flooding, both of which cause impacts to industry, agriculture, tourism and the environment. Scientists, water managers and other stakeholders are interested in knowing what is in store for the future of the Red River Basin. Researchers at the University of Oklahoma and the Choctaw and Chickasaw Nations developed projections of future hydrology for the Red River Basin under possible future climate conditions. A methodology was developed for using current state of the art Global Climate Models (GCM) and applying them on a scale suitable for hydrologic models, ultimately making the information useful to water managers...
Abstract (from Springer): Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0022169414010087): Monthly calibrated values of the Hamon PET coefficient ( C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed...
Abstract (from http://www.sciencedirect.com/science/article/pii/S002216941400225X): This study assesses the latest version, Version 7 (V7) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall estimates by comparison with the previous version, Version 6 (V6), for both near-real-time product (3B42RT) and post-real-time research products (3B42) over the climate-transitional zone in the southern Great Plains, USA. Two basins, the Verdigris River Basin (VRB) in the east and the Upper Washita Basin (UWB) in the west, with distinctive precipitation but similar vegetation and elevation, were selected to evaluate the TMPA products using rain gauge-blended products with WSR-88D...
Drought indices are widely used for drought monitoring. This study evaluates the performance of six indices (Palmer’s Drought Severity Index (PDSI), Palmer’s Z-index, precipitation percent normal, precipitation percentiles, Standardized Precipitation Index (SPI), and the Standardized Precipitation Evapotranspiration Index (SPEI)) to determine which are most appropriate for monitoring agricultural drought in the south-central United States. Soil moisture and crop yield data for winter wheat, corn and cotton are used to assess the performance of drought indices. The results indicate that SPEI is the most representative of soil moisture conditions. The best drought index for crop yield varies depending on crop type...
The establishment of the South Central Climate Science Center (SCCSC) heralded new forms of partnership among Tribal nations and members of the climate science and conservation communities. But communicating key concepts such as risk and vulnerability is a culturally specific practice. So these new relationships call for pluricultural conversations about climate change and variability. To contribute to the goal of mutual understanding, this project developed and implemented a series of five workshops -- four in Oklahoma and one in New Mexico -- that introduced Tribal members and employees across the region to the SC CSC as a resource for their climate adaptation practices. Not counting members of the research team,...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0277379115300329): Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate...
Abstract (from http://link.springer.com/article/10.1007/s00382-017-3534-z): Annual precipitation in the largely agricultural South-Central United States is characterized by a primary wet season in May and June, a mid-summer dry period in July and August, and a second precipitation peak in September and October. Of the 22 CMIP5 global climate models with sufficient output available, 16 are able to reproduce this bimodal distribution (we refer to these as “BM” models), while 6 have trouble simulating the mid-summer dry period, instead producing an extended wet season (“EW” models). In BM models, the timing and amplitude of the mid-summer westward extension of the North Atlantic Subtropical High (NASH) are realistic,...
The purpose of this project was to enhance the knowledge of local tribal environmental professionals related to planning for the increased frequency of weather events as a result of climate change. Beyond expanding knowledge, the objective of this workshop introduce the Division of Regional and City Planning faculty and students to the planning needs of tribal communities related to climate change. As a secondary objective, the grantees sought to lay a foundation for building relationships with the regional BIA offices and the tribal environmental professionals for future planning and research activities.
Led by members of the South Central Climate Science Center (SC CSC) consortium, this project developed and implemented a professional development workshop for graduate students, post-docs, and early-career researchers within the SC CSC region. The workshop (1) introduced participants to the goals, structure, and unique research-related challenges of the SC CSC and its place within the U.S. Department of the Interior and the larger CSC network, offering them insight into how their research fits into the broader research priority goals and its eventual applicability to end-user needs across the region; (2) provided an opportunity for participants to present their research to fellow peers; (3) facilitated interdisciplinary...
Abstract (from Wiley Online Library): Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes...
Abstract (from http://www.nature.com/articles/srep15956): Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth’s climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982–2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr−2 ( P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year;...