Skip to main content
Advanced Search

Filters: Types: Citation (X) > partyWithName: Andrew Hansen (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2013 Projects > Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy ( Show direct descendants )

5 results (13ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___North Central CASC
____FY 2013 Projects
_____Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy
View Results as: JSON ATOM CSV
Abstract (from http://www.islandpress.org/book/climate-change-in-wildlands): Scientists have been warning for years that human activity is heating up the planet and climate change is under way. In the past century, global temperatures have risen an average of 1.3 degrees Fahrenheit, a trend that is expected to only accelerate. But public sentiment has taken a long time to catch up, and we are only just beginning to acknowledge the serious effects this will have on all life on Earth. The federal government is crafting broad-scale strategies to protect wildland ecosystems from the worst effects of climate change. The challenge now is to get the latest science into the hands of resource managers entrusted with protecting...
Abstract (from http://www.sciencedirect.com/science/article/pii/S1574954115001466): Anticipating the ecological effects of climate change to inform natural resource climate adaptation planning represents one of the primary challenges of contemporary conservation science. Species distribution models have become a widely used tool to generate first-pass estimates of climate change impacts to species probabilities of occurrence. There are a number of technical challenges to constructing species distribution models that can be alleviated by the use of scientific workflow software. These challenges include data integration, visualization of modeled predictor–response relationships, and ensuring that models are reproducible...
Abstract (from http://www.aimspress.com/article/10.3934/environsci.2015.2.400): State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate...
Managing plant and wildlife species under climate change offers a substantial challenge. Federal agencies have adapted a framework for considering climate change when implementing management actions. This project was designed to demonstrate how elements of that framework, climate science, ecological forecasting, and natural resource management, can be linked to best maintain natural resources under climate change. The project focused on the whitebark pine (WBP) tree. This species occupies high mountain forests and uniquely provides foods and habitats for other species. WBP populations have undergone massive die-offs over the past decade due to pest outbreaks associated with climate warming. In the Greater Yellowstone...