Skip to main content
Advanced Search

Filters: Extensions: Raster (X) > Types: Downloadable (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC ( Show direct descendants )

13 results (105ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___North Central CASC
View Results as: JSON ATOM CSV
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
This dataset represents a climate-informed management alternative for maintaining whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
The TopoWx ('Topography Weather') dataset contains historical 30-arcsec resolution (~800-m) interpolations of daily minimum and maximum topoclimatic air temperature for the conterminous U.S. Using both DEM-based variables and MODIS land skin temperature as predictors of air temperature, interpolation procedures include moving window regression kriging and geographically weighted regression. To avoid artificial climate trends, all input station data are homogenized using the GHCN/USHCN Pairwise Homogenization Algorithm (http://www.ncdc.noaa.gov/oa/climate/research/ushcn/#phas). The interpolation model is open source and information on obtaining model code can be found at http://www.ntsg.umt.edu/project/TopoWx. The...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
This dataset represents current management alternatives for maintaining whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate change scenarios...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
NOTICE: Given the large size of the MACAv2METDATA dataset, and a known issue with the data server being used to host it, initial load times may take a very long time and / or time out. Subsequent requests should be faster due to caching, but the cache clears periodically and the dataset must be rescanned prior to access. We are working on a fix for this issue. In the mean time, please use the dataset with care and make sureyou've reviewed the GDP scalability guidelines. https://my.usgs.gov/confluence/display/GeoDataPortal/Geo+Data+Portal+Scalability+Guidelines This archive contains daily downscaled meteorological and hydrological projections for the Conterminous United States at 1/24-deg resolution utilizing the...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.


    map background search result map search result map TopoWx: Topoclimatic Daily Air Temperature Dataset for the Conterminous United States Multivariate Adaptive Constructed Analogs (MACA) CMIP5 Statistically Downscaled Data for Coterminous USA Spatial Prioritization of White Bark Pine Management Actions based on climate-informed management under the CESM1-CAM5, RCP 8.5 scenario, 2069-2099. Spatial Prioritization of WBP Management Actions based on current management Land use change and fragmentation of Badland Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Bighorn Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Fort Peck Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Grand River Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Great Sand Dunes Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Rocky Mountain Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Yellowstone Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Lake Traverse Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Rocky Mountain Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Lake Traverse Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Great Sand Dunes Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Grand River Greater Wildland Ecosystems (GWE) using LANDFIRE data Spatial Prioritization of White Bark Pine Management Actions based on climate-informed management under the CESM1-CAM5, RCP 8.5 scenario, 2069-2099. Spatial Prioritization of WBP Management Actions based on current management Land use change and fragmentation of Fort Peck Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Badland Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Bighorn Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Yellowstone Greater Wildland Ecosystems (GWE) using LANDFIRE data Multivariate Adaptive Constructed Analogs (MACA) CMIP5 Statistically Downscaled Data for Coterminous USA TopoWx: Topoclimatic Daily Air Temperature Dataset for the Conterminous United States