Skip to main content
Advanced Search

Filters: partyWithName: Camille L Stagg (X) > Categories: Publication (X)

Folders: ROOT > ScienceBase Catalog ( Show direct descendants )

5 results (11ms)   

View Results as: JSON ATOM CSV
Abstract (from Springer): Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types, Sporobolus alterniflorus (= Spartina alterniflora) and Sporobolus pumilus (= Spartina patens), using 24-h laboratory incubation...
Categories: Publication; Types: Citation
Stress gradients influence many ecosystem processes and properties, including ecosystem recovery from and resistance to disturbance. While recent analytical approaches have advanced multivariate metrics of ecosystem resilience that allow quantification of conceptual resilience models and identification of thresholds of state change, these approaches are not often translated to landscape scales. Using natural and restored salt marshes in Louisiana, USA, we quantified plant community recovery and resistance metrics along flooding stress gradients. n‐dimensional hypervolumes of plant community biomass and structure were simulated using field data collected from disturbance‐recovery experiments. The relationships between...
Categories: Publication; Types: Citation
Coastal wetlands provide numerous ecosystem services; yet these ecosystems are increasingly vulnerable to climate change stressors, especially excessive flooding from sea-level rise and storm events. This study highlights the important contribution of vegetation belowground biomass to marsh stability and identifies loss of vegetation as a critical driver of marsh collapse. We investigated the shear strength of salt marshes and unvegetated interior ponds using a modified cone penetrometer along a chronosequence of wetland marsh collapse (0 to 21 + years following pond formation) to characterize changes in the structural integrity of the marsh soil. Following conversion from vegetated marsh to open water pond, the...
Categories: Publication; Types: Citation
Wetland Carbon and Environmental Management Wetlands are vital natural assets, including their ability to take-up atmospheric carbon and restrict subsequent carbon loss to facilitate long-term storage. They can be deliberately managed to provide a natural solution to mitigate climate change, as well as to help offset direct losses of wetlands from various land-use changes and natural drivers. Wetland Carbon and Environmental Management presents a collection of wetland research studies from around the world to demonstrate how environmental management can improve carbon sequestration while enhancing wetland health and function.
Categories: Publication; Types: Citation
Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This...
Categories: Publication; Types: Citation