Skip to main content
Advanced Search

Filters: partyWithName: Woods Hole Coastal and Marine Science Center (X) > Types: OGC WMS Layer (X)

Folders: ROOT > ScienceBase Catalog > Woods Hole Coastal and Marine Science Center ( Show direct descendants )

51 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The salt marsh complex of the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay (New Jersey, USA), was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts associated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has started to expand national assessment of coastal change hazards and forecast products to coastal...
thumbnail
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management compiled Massachusetts vector shorelines into an updated dataset for the Office’s Shoreline Change Project. The Shoreline Change Project started in 1989 to identify erosion-prone areas of the Massachusetts coast by compiling a database of historical shoreline positions. Trends of shoreline position over long- and short-term timescales provide information to landowners, managers, and potential buyers about possible future changes to costal resources and infrastructure. This updated dataset strengthens the understanding of shoreline position change in Massachusetts. It includes U.S. Geological Survey vector shorelines...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
thumbnail
Note: The 2022 data release "Geospatial Characterization of Salt Marshes in Chesapeake Bay" incorporates the Blackwater region salt marsh dataset. (https://doi.org/10.5066/P997EJYB) This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
Coastal wetlands are major global carbon sinks, however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013 and 2014 growing seasons. Two sediment cores were collected in 2015 from the Phragmites zone to support previously reported core collections from the high marsh sites (Gonneea and others 2018). Collected cores were up to 70 cm in length with dry bulk density ranges from 0.04 to 0.33 grams per cubic centimeter and carbon content 22.4%...
thumbnail
Transport of material in an estuary is important for water quality and hazards concern. We studied these processes in the Hudson River Estuary, located along the northeast coast of the U.S. using the COAWST numerical modeling system. A skill assessment of the COAWST model for the 3-D salinity structure of the estuary has been successfully studied in the past, and the present research extended that understanding to look at both physical and numerical mixing. The model grid extends from the south at the Battery, NY to the north in Troy, NY. The simulation is performed from March 25 to July 11, 2005 (111 days). For more information see: https://doi.org/10.5066/P95E8LAS.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State,...
thumbnail
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate...
thumbnail
These data are a qualitatively derived interpretive polygon shapefile defining surficial sediment type and distribution, and geomorphology, for nearly 1,400 square kilometers of sea floor on the inner-continental shelf from Fenwick Island, Maryland to Fisherman’s Island, Virginia, USA. These data are classified according to Barnhardt and others (1998) bottom-type classification system, which was modified to highlight changes in secondary sediment-types such as mud and gravel across this primarily sandy shelf. Most of the geophysical and sample data used to create this interpretive layer were collected as part of the Linking Coastal Processes and Vulnerability: Assateague Island Regional Study project (GS2-2C), supported...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island National Seashore, Assawoman Island, Atlantic Ocean, Backscatter, All tags...
thumbnail
The San Juan Bay Estuary, Puerto Rico, contains mangrove forests that store significant amounts of organic carbon in soils and biomass. There is a strong urbanization gradient across the estuary, from the highly urbanized and clogged Caño Martin Peña in the western part of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part with limited urbanization. We collected sediment cores to determine carbon burial rates and vertical sediment accretion from five sites in the San Juan Bay Estuary. Cores were radiometrically-dated using lead-210 and the Plum age model. Sites had soil C burial rates ranging from 50 grams per meter squared per year (g m-2...
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
thumbnail
This folder includes a data layer that defines the conceptual marsh units in the salt marsh complex of Assateague Island National Seashore and Chincoteague Bay and additional data layers to facilitate a multi-criteria assessment of state of the coastal salt marshes. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague Bay salt marsh complex, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Unvegetated to vegetated marsh ratio (UVVR) in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is computed based on conceptual marsh units defined by Defne and Ganju (2019). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) The salt marsh complex of Cape Cod National Seashore (CACO), Massachusetts, USA and approximal wetlands were delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan,...
thumbnail
This U.S. Geological Survey data release provides data on spatial variations in tidal datums, tidal range, and nuisance flooding in Chesapeake Bay and Delaware Bay. Tidal datums are standard elevations that are defined based on average tidal water levels. Datums are used as references to measure local water levels and to delineate regions in coastal environments. Nuisance flooding refers to the sporadic inundation of low-lying coastal areas by the maximum tidal water levels during spring tides, especially perigean spring tides (also known as king tides). Nuisance flooding is independent of storm event flooding, and it represents a cumulative or chronic hazard. The data were obtained by following a consistent methodology...
thumbnail
This folder includes a data layer that defines the conceptual marsh units in the salt marsh complex of Fire Island National Seashore and central Great South Bay, and additional data layers to facilitate a multi-criteria assessment of state of the coastal salt marshes Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and central Great South Bay salt marsh complex, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Elevation distribution in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2019). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED), where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands....
thumbnail
The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague...


map background search result map search result map Sediment Texture and Geomorphology of the Sea Floor from Fenwick Island, Maryland to Fisherman's Island, Virginia Coastal wetlands of E.B. Forsythe National Wildlife Refuge, New Jersey Coastal wetlands of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Coastal wetlands of Fire Island National Seashore and Central Great South Bay, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts U.S. Geological Survey hydrodynamic model simulations for Barnegat Bay, New Jersey, during Hurricane Sandy, 2012 Numerical model of salinity transport and mixing in the Hudson River Estuary Coastal wetlands from Jamaica Bay to western Great South Bay, New York Coastal wetlands of eastern Long Island, New York (ver. 2.0, March 2024) Collection, analysis, and age-dating of sediment cores from mangrove wetlands in San Juan Bay Estuary, Puerto Rico, 2016 Historical shoreline positions for the coast of MA, from 1844 - 2014 Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Coastal wetlands from Jamaica Bay to western Great South Bay, New York Coastal wetlands of Fire Island National Seashore and Central Great South Bay, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Coastal wetlands of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Coastal wetlands of E.B. Forsythe National Wildlife Refuge, New Jersey U.S. Geological Survey hydrodynamic model simulations for Barnegat Bay, New Jersey, during Hurricane Sandy, 2012 Coastal wetlands of eastern Long Island, New York (ver. 2.0, March 2024) Sediment Texture and Geomorphology of the Sea Floor from Fenwick Island, Maryland to Fisherman's Island, Virginia Numerical model of salinity transport and mixing in the Hudson River Estuary Historical shoreline positions for the coast of MA, from 1844 - 2014 Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay